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principles of these flows.

The transport of electrolytes in electric fields is a ubiquitous phenomenon commonly harnessed in microfluidics.
A classic leaky dielectric model for flow generated by electric fields accurately predicts electrohydrodynamic
transport phenomenon but is valid for millimeter-scale and larger flows and at relatively low ionic strength.
Here, we derive and use a modified version of this model to sub-millimeter scales more relevant to microfluidics,
where diffusive transport of charged species becomes non-negligible. We formulate a general equation set,
the modified Ohmic model, applicable to the transport of binary, asymmetric electrolytes. We leverage this
model to describe a variety of microfluidic electrokinetic systems, including DC electroosmosis, alternating
current electrokinetics (ACEK) and induced-charge electroosmosis (ICEO), thus highlighting some unifying

© 2016 Published by Elsevier Ltd.

1. Introduction

To our knowledge, British physicist William Gilbert first demon-
strated the effects of electric forces on fluids circa 1600. In De Magnete,
he described the deformation of a water droplet into a conical shape
pointing toward a proximate piece of charged amber [1]. More than
200 years later, Reuss used a galvanic cell to drive fluid through a packed
soil column, thereby generating electroosmotic flow (EOF) [2]. On one
hand, a fair characterization of Gilbert's experiment is an exploration
of what is now generally referred to as electrohydrodynamics (EHD),
which corresponds to the general interaction between fluids and elec-
tric fields. EHD is sometimes associated with “macro” length scales
(order 1 cm or greater) and submicromolar ion densities. On the other
hand, Reuss highlighted a subset of EHD we can refer to as electrokinet-
ics (EK). EK is typically characterized by the importance of electric dou-
ble layers (EDLs). EDLs form at interfaces and can strongly affect the
response of a liquid to an externally applied potential. Here, we concen-
trate on this subset of EHD, as EK describes most of EHD flows at the
microscale.

Helmoltz and Von Smoluchowski together contributed to EK by in-
cluding respectively early treatments of the EDL over charged surfaces
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and quantification of electroosmosis in applied electric fields [3,4].
Perrin later elegantly modeled the EDL as a distributed-charge capacitor
[5]. The locations of the capacitor plates relative to the surface, the inner
and outer planes, were later named after Helmoltz [6]. Continuing
Perrin's work, Gouy and Chapman independently derived the ionic dis-
tribution of diffuse charges in the EDL using the Boltzman distribution
for charges in solution [7,8]. In his derivation, Gouy noted the impor-
tance of a characteristic length of charge screening, Ap, which now
bears the name of Debye length.

Perhaps the most important contribution in the field of modern
EHD came from J.R. Melcher. Inspired by G.I. Taylor's leaky dielectric
model for droplet deformation in an electric field explaining Gilbert
type droplet phenomena [9°], Melcher derived the so-called Ohmic
model linking the interaction of ionic species and fluid flow with
electric fields [10]. Ohmic model equations describe the interaction
of electric fields with free charge density, bound charge density (di-
poles), conductivity fields, and momentum transport. Taylor and
Melcher together synthesized this work by stressing the importance
of net charge regions within the fluid [11°]. This bulk charge occurs at
electric heterogeneities in the medium (e.g., gradients in conductiv-
ity or permittivity) in the form of monopole and dipole density gra-
dients and can generate pressure and shear stresses (and inject
vorticity) that drive flow and can destabilize its motion.

In his Ohmic model, Melcher assumed that the diffusive trans-
port of charges remains negligible. This assumption is reasonable for
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centimeter-scale flows with relatively low conductivity but fails for EK
microdevices where diffusion plays an important role in developing
the conductivity field. Further, Melcher recognized that the imbalance
between positive and negative charges that generates Coulomb forces
is very small compared to the total number of charges. The latter is
referred to as the electroneutrality assumption, and Melcher cautioned
that it does not hold for length scales below 2.5 um [10]. As we shall see,
this lower limit is roughly 1 pm for EK microflows (lengths approaching
the Debye length for achievable ion densities).

Here, we formulate a general equation set we term a “generalized
Ohmic model,” which is relevant to a wide range of microfluidic
EK systems. We will leverage the model to discuss physics of the electric
double layer and dynamics of charge transport in microflow devices.
We demonstrate applications of this generalized Ohmic model to
DC electroosmotic flows (EOF), alternating current electrokinetics
(ACEK), induced-charge electroosmosis (ICEO), electrothermal flows
(ETF), and electrokinetic instabilities (EKI). Our goal here is to summa-
rize and help unify a physical understanding and formulate approxi-
mate equations used to study these phenomena. We strive to show
that various disparate formulations are each special cases of the same
equation set, and part of a more general EHD theory for coupling
between electric fields and fluid flow.

2. Ohmic model for binary electrolytes

We here describe governing equations useful for modeling the
flow of binary asymmetric electrolytes. We first write the conserva-
tion of momentum and describe forces acting on fluids in electric
fields. We then write Gauss' law for free charge density and discuss
various regimes for the electroneutrality approximation. Finally,
we derive a general Ohmic model for EK flows that includes effects
of currents generated by diffusion and electrolyte asymmetry. Our
goal is to provide a roadmap for the modeling of general EK flows
and to provide insight into the transport mechanisms involved in EK
phenomena.

2.1. Momentum

We focus in the limit of low Reynolds number Re typically applicable
to microfluidic devices [12]. We neglect the advection term in the
incompressible Navier-Stokes equation for a fluid of density p,
kinematic viscosity p, and dielectric constant &:

V.v=0 (1)
v 2 1.0
pop = ~VP VIV + pE— 5 [EVE (2)

where v is the fluid velocity, p the pressure, E the local electric field, and
pPe=F(z c+ + z_c_) is the free charge density where F is Faraday's
constant, c is the species molar concentration, and z its valence. The
subscripts + and — denote the cation and anion of an asymmetric
binary electrolyte. We retain the unsteady flow velocity term as inertial
forces due to locally accelerating liquids may be important (e.g., in
devices with high-frequency forcing phenomena such time-varying
electric fields). We omitted the magnetic induction term j x B where j
is the current density and B the magnetic field, which is typically
negligible for flows of aqueous non-magnetic solutions and in the
absence of large magnetic fields. We also neglect the electrostriction

term V(3 \E|2pg—g |T) which is small for incompressible flows [11°]. The

electric force density then reduces to the last two terms of Eq. (2):
respectively the force on the free charge density (or Coulomb force)
and the force on electric dipoles within the fluid.

2.2. Scaling of Gauss' law and concept of electroneutrality

We present a scaling of Gauss' law and introduce the concept of
electroneutrality. We decompose the electric field into the applied
(external) field Eey, (defined by V. (€E.y) = 0) and the internal field
E;.c generated by net (unbalanced) free charges, hence:

V- (¢Ein) =P, 3

Here p. is the free charge density (i.e., charge not bound within net
neutral dipoles, whether it is stationary or not). Forces on dipole gradi-
ents are accounted for by the concept the dielectric constant &, which is
a scalar for isotropic materials. We non-dimensionalize Eq. (3) as

g g o
serF VB = o, @

where p, = FAcop?, Eine = EinEine, and Ej is the characteristic scale
of internal field. We define a characteristic scale background concentra-
tion of ions ¢y (in moles per unit volume) of the form ¢y = ', (c. +c_).
We use this simple arithmetic average as most EK applications involve
valences of £ 1 or +2. To measure the degree of charge imbalance,
we define the non-dimensional parameter a=Aco/co wWhere Acy =
z.C4+ + z_c_ is the dimensional imbalance between cations and anions
per unit volume. 6 is a characteristic scale for the dimension of the flow
region containing net free charge and is determined by the particular
physics of the problem. Given a correct determination/estimation of 6,
the starred terms are order unity, and so the two prefactors should be
on the same order.

The question of electroneutrality can be phrased as follows: how
much more or less positive charge z, c is there than negative charge
z_c_ in regions where E;, is order E.? In such regions, the internally
generated field can cancel or double (depending on sign) the external
field. We consider two examples.

A first example is the characteristic shielding length of charge in a
classic EDL. Here, 6 is determined by the local balance between diffusion
and electromigration and scales as Debye (a.k.a. Gouy) screening length
Ap=+/€kT /z2e2cy [13]. Substituting Ap for §in Eq. (4), we find ascales as
dinee/kT where ¢y = Ein6 is on the order of the zeta potential ¢ of the
diffuse layer [13]. Measured zeta potentials can be as high as order 10
times the thermal voltage kT/e [14]. Hence, our scaling shows « can be
up to order 10. Electroneutrality is therefore not a valid assumption
within an EDL.

As a second example, consider charge densities created by the
coupling of electric fields with gradients in physicochemical properties
of a solution. Examples include conductivity gradients in field amplified
sample stacking [15], electrokinetic instabilities [16°,17] or permittivity,
and conductivity gradients in electrothermal flows [18]. In these
problems, 6 is often limited by the interplay between advection and
diffusion, and so order 10 um (examples include the interface between
two buffer streams mixing at an intersection [17] or the distances
between microfabricated electrodes [19,20°]). Taking 6 = 10 um
and assuming an external electric field of order 10* V/m (and
monovalent ion densities of order 1 mM), we see from Eq. (4) that
Eine can cancel or double E,, for o ~ 107> < 1, an approximately
neutral charge balance.

These scaling arguments are consistent with the concept and utility
of electroneutrality: in equations describing conservation of species, we
can assume z,c, ~ — z_c_ in regions outside any EDLs. At the same
time, we must take into account even the smallest (compared to cg)
imbalances between z, ¢, and — z_c_ when we consider conservation
of electric fields (Gauss' law).

The concept of electroneutrality is somewhat analogous to the
Boussinesq approximation for buoyancy-driven flows associated with
small density differences [21], for example, due to temperature gradients.
Under the Boussinesq approximation, we can assume approximately
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