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DSC-MRI analysis is based on tracer kinetic theory and typically involves the deconvolution of the MRI signal
in tissue with an arterial input function (AIF), which is an ill-posed inverse problem. The current standard
singular value decomposition (SVD) method typically underestimates perfusion and introduces non-
physiological oscillations in the resulting residue function. An alternative vascular model (VM) based ap-
proach permits only a restricted family of shapes for the residue function, which might not be appropriate
in pathologies like stroke. In this work a novel deconvolution algorithm is presented that can estimate both
perfusion and residue function shape accurately without requiring the latter to belong to a specific class of
functional shapes. A control point interpolation (CPI) method is proposed that represents the residue function
by a number of control points (CPs), each having two degrees of freedom (in amplitude and time). A complete
residue function shape is then generated from the CPs using a cubic spline interpolation. The CPI method is
shown in simulation to be able to estimate cerebral blood flow (CBF) with greater accuracy giving a regression
coefficient between true and estimated CBF of 0.96 compared to 0.83 for VM and 0.71 for the circular SVD
(oSVD) method. The CPI method was able to accurately estimate the residue function over a wide range of
simulated conditions. The CPI method has also been demonstrated on clinical data where a marked difference
was observed between the residue function of normally appearing brain parenchyma and infarcted tissue. The
CPImethod could serve as a viablemeans to examine the residue function shape under pathological variations.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Dynamic susceptibility contrast magnetic resonance imaging
(DSC-MRI) is frequently used in the measurement of cerebral perfu-
sion in stroke and other pathological conditions. It has been shown
that perfusion parameters like cerebral blood flow (CBF), cerebral
blood volume (CBV) and mean transit time (MTT) can be used in
acute stroke patients for quantification of cerebral ischaemia (Kane
et al., 2007; Østergaard, 2005; Østergaard et al., 1996a, 1996b). The
measurement of these perfusion parameters is based on tracer kinetic
theory (Gobbel and Fike, 1994; Østergaard et al., 1996a, 1996b;
Zierler, 1962) that considers the tissue concentration time curve as
the convolution of the arterial input function (AIF) with a CBF-scaled
tissue residue function. The residue function describes the fraction of

tracer remaining in the tissue vasculature at a time after its arrival.
One major concern in inferring the crucial perfusion parameters
from DSC-MRI is reliable and accurate deconvolution of the observed
concentration time curve (CTC) with respect to the measured AIF.

Initially an analytical model-dependent deconvolution technique
was proposed (Jacquez, 1972) but it has been superseded by more
flexible nonparametric approaches like frequency domain deconvo-
lution (Fourier transform) (Gobbel and Fike, 1994; Rempp et al.,
1994) and later by algebraic singular value decomposition (SVD)
method (Østergaard et al., 1996a, 1996b). Variants of the SVD ap-
proach such as tSVD (truncated SVD) (Østergaard et al., 1996a,
1996b) and the time insensitive oSVD (circular-SVD) (Wu et al.,
2003) are widely used to estimate the tissue response function
(TRF; defined as residue function multiplied with CBF), its maximum
value being used to estimate CBF. The key issues with SVD-based
methods are the underestimation of CBF and also the introduction
of non-physiological oscillations in the resulting residue function,
making the residue function difficult to interpret. There have been at-
tempts with various regularization approaches to reduce the oscilla-
tion in the residue function. Some of the widely used regularization
methods involve: truncated SVD (threshold using Psvd (Østergaard
et al., 1996a, 1996b)), oSVD using oscillation index (OI) (Wu et al.,
2003) or adding of a penalty term in the optimization, for example
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the Tikhonov regularization of Calamante et al. (2003). Despite all
these efforts the estimation of realistically smooth residue functions
has not yet been achieved with SVD methods.

More recently Mouridsen et al. (2006) have proposed a vascular
model (VM) implemented within a Bayesian framework as an alterna-
tive to SVD methods. The model is based on a vascular architecture
where a gamma probability distribution function is assumed to model
the underlying tracer transit times. The VM perfusion values are be-
lieved to produce more accurate estimates compared to the SVDmeth-
od, but, being a model-based solution, it lacks the flexibility of SVD
methods. In particular, the underlying gamma distribution in the VM
is controlled by two parameters that permit only a restricted family of
shapes for the tissue response functionwhichmight not be appropriate
in modelling altered vasculature in pathologies like stroke.

The shape of residue function is also of interest because it contains
information about tissue vascular integrity (Østergaard et al., 1999).
For in vivo analysis the actual residue function shape is not known
a priori and, particularly in pathology, might not be drawn from
the set of functions currently assumed for typical residue functions.
Hence an analysis approach that is both model-free and non-
parametric would be desirable. The goal of this work was therefore
to develop a deconvolution algorithm that produces accurate perfu-
sion values by improved estimation of the residue function over a
wide range of physiological conditions. We propose a Bayesian con-
trol point interpolation (CP-interpolation, CPI) deconvolutionmethod
that can estimate cerebral perfusion along with a physiologically
plausible residue function without requiring it to belong to a specific
class of functional shapes. The resulting residue function shapes can
be used to assess the residue function variability among different
brain regions and changes in the residue function in pathology.

First, theoretical concepts of tracer kinetic theory, SVD decon-
volution and VM method are described followed by the framework
for the CP-interpolation method and its estimation procedure. Sub-
sequently, the simulation protocol that was used to evaluate the
method will be elaborated. Finally, examples are given where the
CP-interpolation method was applied to analyze data from a healthy
participant and a cerebrovascular diseases patient and the results
compared with SVD and VM methods.

Theory

For a given tissue voxel it is assumed that the intravascular tracer
delivery to the capillaries can be represented by an arterial input func-
tion (AIF), denoted by Ca(t). According to the indicator-dilution theo-
ry (Gobbel and Fike, 1994; Østergaard et al., 1996a, 1996b; Zierler,
1962), the concentration of the tracer in the capillaries at time t can
be expressed as the convolution of Ca(t) with the tissue residue func-
tion R(t), scaled by the cerebral blood flow (CBF):

C tð Þ ¼ α � CBF � Ca tð Þ⊗R tð Þð Þ ¼ α � CBF∫
τ

0
Ca τð Þ � R t−τð Þdτ ð1Þ

Where C(t) is the measured concentration time curve,⊗ represents
convolution as defined on the right-hand side of the equation and the
proportionality constant α is a measure of brain tissue density and dif-
ference in haematocrit between capillaries and large vessels (compen-
sating for the fact that only plasma volume is accessible to contrast
agent) (Calamante et al., 1999). Since the parameterα is generally inde-
terminable, it is usually replaced by a fixed value (Calamante et al.,
1999; Knutsson et al., 2010). The residue function is a monotonically
decaying function with an initial value of one, R (0)=1. The analysis
of Eq. (1) typically involves deconvolution of the chosen AIF from the
measured CTC. The resulting tissue response function contains the in-
formation about both CBF and the residue function shape. The estimat-
ed residue function shape itself contains information on microvascular
flow heterogeneity (Jespersen and Østergaard, 2012; Østergaard et al.,

1999). Another important perfusion parameter calculated from the
CTC is the mean transit time (MTT). This signifies the average time for
a contrast molecule to pass through the tissue vasculature following
an ideal bolus injection and can either be calculated using the central
volume theorem (Zierler, 1962, 1965)

MTT ¼ CBV
CBF

ð2Þ

where,

CBV ¼ ∫C tð Þ dt
∫Ca tð Þ dt

ð3Þ

or, estimated as the area under the deconvolved residue function
(Knutsson et al., 2007, 2010; Wirestam et al., 2007):

MTT ¼ ∫R tð Þ dt ð4Þ

The most frequently used methods for the deconvolution process
are truncated singular value decomposition (tSVD) (Østergaard
et al., 1996a, 1996b) and its time insensitive variant circular-SVD
(oSVD) (Wu et al., 2003). These use a discrete matrix representation
of Eq. (1) and perform SVD to calculate the pseudo-inverse of the
AIF matrix. The resultant TRF (tissue response function) from a simple
SVD methodology (linear deconvolution process) usually has a highly
oscillatory solution hence the tSVD method uses a threshold (Psvd)
for singular values in the SVD methodology (typically 20% of the larg-
est singular values). The introduction of Psvd enables it to regularize
the resulting residue function. The oSVD variant instead uses a circu-
lar deconvolution matrix as well a local regularization parameter,
oscillation index (OI), to derive an optimal threshold that balances
CBF underestimation and noise-induced instability of the computed
solution. The circular deconvolution was proposed as a means to
make the deconvolution insensitive to bolus arrival delay, where
bolus arrival delay (δ) signifies the temporal delay in the arrival of
the tracer to the tissue with respect to the measured AIF. The maxi-
mum of the resultant TRF is the value of CBF. The oSVD method
has been demonstrated to provide a substantial improvement over
tSVD, hence is widely used in practice. However, in spite of employing
a better regularization technique, the method is still unable to pro-
vide a smooth characterization of the residue function shape and re-
sults in significant underestimation of CBF particularly for high flow
and short MTT values. The same is true for any regularization ap-
proach as oscillations in resulting solution is an inherent property of
model-free-deconvolution regularized methods (e.g. SVD methods);
regularization dampens the oscillations at the cost of losing accuracy
in perfusion estimates.

The more recently proposed vascular model (VM) based approach
was introduced to estimate a smooth monotonically decreasing resi-
due function shape along with more accurate estimates of perfusion
values (Mouridsen et al., 2006). The VM assumed a parallel distribu-
tion of capillaries in the tissue volume that is being supplied. This
was characterized by a continuous distribution of transit time for
which a gamma distribution was chosen:

h t;α;βð Þ ¼ 1
βα ⋅Г αð Þ ⋅t

α−1 ⋅ exp
−t=β ;α;β > 0 ð5Þ

where, h (t) was the density function of the transit times, α was the
shape and β was the scale parameters respectively.

From this an analytic form for the residue function could bewritten:

R tð Þ ¼ ∫
∞

t

h τ;α;βð Þdτ ð6Þ
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