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Positron emission tomography (PET) can be used to quantify physiological parameters. However to perform
quantification requires that an input function is measured, namely a plasma time activity curve (TAC).
Image-derived input functions (IDIFs) are attractive because they are noninvasive and nearly no blood loss
is involved. However, the spatial resolution and the signal to noise ratio (SNR) of PET images are low,
which degrades the accuracy of IDIFs. The objective of this study was to extract accurate input functions
from microPET images with zero or one plasma sample using wavelet packet based sub-band decomposition
independent component analysis (WP SDICA). Two approaches were used in this study. The first was the use
of simulated dynamic rat images with different spatial resolutions and SNRs, and the second was the use of
dynamic images of eight Sprague–Dawley rats. We also used a population-based input function and a fuzzy
c-means clustering approach and compared their results with those obtained by our method using normal-
ized root mean square errors, area under curve errors, and correlation coefficients. Our results showed that
the accuracy of the one-sample WP SDICA approach was better than the other approaches using both simu-
lated and realistic comparisons. The errors in the metabolic rate, as estimated by one-sample WP SDICA, were
also the smallest using our approach.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Positron emission tomography (PET) is a nuclear medicine imaging
modality. Its dynamic images with attenuation and scatter corrections
can be acquired and processed to allow quantitative analysis. After
quantitative analysis, it is possible to obtain physiological parameters
that can be used to improve classification accuracy with respect to vari-
ous types of disease. For example, 18F-FDG-PET can be used to quantify
the local metabolic rate of glucose, which is changed in patients with
several neurological diseases such as epilepsy (La Fougere et al., 2009;
Liew et al., 2009) and Alzheimer's disease (Mosconi et al., 2009, 2010;
Nordberg et al., 2010). Other studies have used various small animal
models for investigating pathophysiological mechanisms (Lancelot and
Zimmer, 2010; Maeda et al., 2007; O'Brien and Jupp, 2009). To calculate
physiological parameters requires the measurement of an input func-
tion. A plasma time activity curve (TAC) is referred to as an input func-
tion because it serves as an input for the tracer kinetic model, which
describes arterial blood plasma delivery of the tracer to all tissues.

Therefore, an accurate determination of the input function is important
when carrying out a kinetic analysis.

The gold standard for input function determination is an invasive ar-
terial blood sampling procedure that allows the measurement of
18F-FDG activity in the arterial plasma (Lammertsma and Hume, 1996;
Phelps et al., 1979; Terry et al., 2005). This technique has several draw-
backs, including the fact that arterial puncture is uncomfortable, that the
blood sampler is exposed repeatedly to radiation, that there is a need for
frequent sampling, and that there is a need for centrifugation. The ap-
proach is labor intensive and all these steps affect the accuracy of the
input function because they may potentially create major errors. Fur-
thermore, arterial puncture and arterial blood sampling are challenging
in small animal studies due to the subject's small arteries and limited
blood volume. In addition, large blood loss can affect the accuracy of
the physiological parameters. These problems have led several groups
to investigate alternative methods.

One alternative is often called the population-based method and is
able to reduce the number of plasma samples taken from one individ-
ual (Eberl et al., 1997; Takikawa et al., 1993). First, a template of the
input function is calculated by averaging the input functions from a
sample population. Second, only one or two plasma samples are
taken from each individual. Finally, the estimated input function can
be obtained by scaling the template using the actual plasma activity
of the individual. The population-based method has been found to

NeuroImage 63 (2012) 1273–1284

⁎ Corresponding author at: Department of Biomedical Imaging & Radiological
Sciences, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei,
112 Taiwan.

E-mail address: jcchen@ym.edu.tw (J.-C. Chen).

1053-8119/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.neuroimage.2012.07.061

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://dx.doi.org/10.1016/j.neuroimage.2012.07.061
mailto:jcchen@ym.edu.tw
http://dx.doi.org/10.1016/j.neuroimage.2012.07.061
http://www.sciencedirect.com/science/journal/10538119


be high accuracy when estimating physiological parameters and re-
quire only one or two plasma samples for calibration, which reduces the
radiation exposure to the blood sampler (Eberl et al., 1997; Takikawa
et al., 1993). In this study, we used the population-based method and
compared it with our method.

Another attractive method is categorized as an approach that uses
image-derived input functions (IDIFs). Herein, the image based input
function is determined from the region of interest (ROI) within the
left ventricle, the left atrium or the ascending aorta (Gambhir et al.,
1989; Hoekstra et al., 1999, 2000; Li et al., 1998; Ohtake et al., 1991;
Rechavia, 1997; Richard et al., 2005; van der Weerdt et al., 2001;
Wahl et al., 1999). This method is attractive because it is nearly
noninvasive, and involves a simpler protocol than manual blood
sampling. Chen et al. (1998) used the method to manually draw ROIs
at the carotid artery to generate an IDIF and corrected the partial
volume and spillover effects (PVE) of the IDIF using three venous plas-
ma measurements. This method can reduce the PVE and provide accu-
rate IDIFs. However, this method still needs three venous plasma
samples manually to calculate the coefficients for the PVE correction.
Furthermore, the ROIs for the PVE correction need to be determined
manually. This is subjective and prone to man-made errors. As a result
more objective methods such as cluster analysis (Arai and Barakbah,
2007; Bezdek and Ehrlich, 1984; Hartigan andWong, 1979) or indepen-
dent component analysis (ICA) (Hyvarinen, 1999; Hyvarinen and Oja,
1997) have been used. For cluster analysis, the boundaries between
the blood pool and the other tissue can be treated as another cluster
in order to minimize the PVE. It has been report that cluster analysis is
able to provide accurate input functions without the need for manual
delineation of the ROI in human studies (Liptrot et al., 2004; Murase
et al., 2004). When the ICA method is used, dynamic PET images are
treated as mixed signals that are spatial distributions across several tis-
sues (Ahnet al., 2001; Chen et al., 2007; Lee et al., 2001; Naganawa et al.,
2005; Richard et al., 2005; Su et al., 2005). ICA can estimate the tissues
that are spatially independent by a maximization of their non-Gaussian
nature (Hyvarinen, 1999; Hyvarinen and Oja, 1997). However, the spa-
tial resolution and signal to noise ratio (SNR) of PET images are poor and
the independence property of the different tissue distributions does not
always hold. A poor SNR, the presence of cardiac motion, and the pres-
ence of respiratory motion all affect the independence property of the
different tissue distributions. A poor spatial resolution can make tissue
distributions move towards a Gaussian distribution that cannot be di-
rectly solved by ICA. Kopriva and his colleagues developed a wavelet
packet based sub-banddecomposition independent component analysis
(WP SDICA) in order to increase the accuracy of such ICA estimated re-
sults (Kopriva and Sersic, 2008). When source signals are dependent,
WP SDICA assumes that there exist some frequency sub-bands that are
independent. Then WP SDICA extends applicability of standard ICA by
making the source signals more independent and extracts the sub-band
with the least-dependent components. It has been shown that WP
SDICA is able to provide accuracy and robustness when separating
mixtures of images of human faces with Gaussian noise (Kopriva and
Sersic, 2008). In this study, we usedWP SDICA to extract input functions.

18F-FDG is widely used to quantify metabolic rate of glucose and
microPET has been used to investigate neuronal metabolism, for the
most part in rats (Lancelot and Zimmer, 2010). Therefore we used
WP SDICA to extract the 18F-FDG TACs in rats. In order to derive a
truly unsupervised approach to extract input function, an artificial
neural network (ANN) was used to select a whole blood TAC from
the WP SDICA-estimated TACs. Finally, we transferred the image-
derived whole blood TAC to plasma using a two-exponential cor-
rection. If one plasma sample is available, the one-sample WP
SDICA-estimated input function was obtained by scaling the WP
SDICA-estimated input function with the plasma activity. The method
was validated by comparing the WP SDICA-estimated input function
with a cluster analysis estimated input function, a population-based
input function and a manual sampled input function.

Material and methods

Digital dynamic rat phantom

We designed a digital dynamic rat cardiac phantom to validate and
evaluate our method. Three tissues, the ventricle, the myocardium and
the rat body, were manually delineated in the last frame of a realistic
rat PET image (Fig. 1a). The TAC of the ventriclewas amanually sampled
whole blood TAC. The blood-sampled TAC was acquired from a realistic
rat study. The sampling time points were 0 s, 8 s, 15 s, 30 s, 45 s, 1 min,
2 min, 3 min, 5 min, 7.5 min, 10 min, 15 min, 25 min, 35 min, 45 min
and 60 min. The tissue TACs of the myocardium and the rat body were
computed using the three-compartment model (Phelps et al., 1979)
and 18F-FDG with given flux constants K1–k4 values; these were calcu-
lated from a realistic study and the manually sampled input function
(Fig. 1d). Digital dynamic image sequences were simulated using the
0 s, 8 s, 15 s, 30 s, 45 s, 1 min, 2 min, 3 min, 5 min, 7.5 min, 10 min,
15 min, 25 min, 35 min, 45 min and 60 min frames. The time points
of thedynamic imageswere created according to themanual blood sam-
pling protocol. This is able to avoid considering errors that occur due to
interpolation of the whole blood TAC to fit the same time points as the
image frames and can evaluate each image based method directly. The
original cardiac phantom is noise-free without PVE. In order to simulate
more realistic PET dynamic images, we included the following steps:

(A) Radon transformwas performed on the images to acquire noise-free
sinograms. In PET imaging, images are reconstructed from
sinograms. Thus we forward projected images to the sinogram
domain using Radon transformation (Deans, 1983). The comput-
ed noise-free sinogramswere regarded as themean values of the
detector counts.

(B) The total event counts of the computed sinogramwere changed and
random numbers were generated using a Poisson distribution and
the mean counts of each pixel. After generating random numbers
from the Poisson distribution of the sinogram, the SNR of each
pixel in the sinogram is the square root of the mean value of
the pixel in the sinogram. Thus, there is a spatial-variant noise
distribution in our simulated sinograms and images. We also
simulated images with different SNRs by changing the total
counts of the sinogram.

(C) The sinograms were convoluted using 1-D Gaussian blurring filters.
In PET imaging, the high energy γ-ray might penetrate several
detectors instead of interacting with a single detector. The detec-
tor blurring factor degrades image quality and causes PVE. In
order to evaluate the efficiency of ICA at different spatial resolu-
tions, the sinogramwas convoluted using different 1-D Gaussian
filters.

(D) Sinograms were reconstructed using filtered back-projection (FBP)
to form a set of dynamic images. After FBP, we can obtain a set
of dynamic images with the dimensions 256×256×16.

The SNR of each total count was computed over the rat body. The
SNR of the image was then estimated by the following equation:

SNR ¼ mean xð Þ=std xð Þ; ð1Þ

where x belongs to amanually delineated region in the rat body. In order
to determine the spatial resolution (the full-width-at-half-maximum,
FWHM) of the simulated image, we fitted the point spread function to
the reconstructed image using the Gaussian model. The FWHM is calcu-
lated using the following equation:

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ln 2ð Þ

q
σ ; ð2Þ

where σ is the standard deviation of the point spread function. The SNR
of our realistic rat image is about 4, and the FWHM of our PET is about
2.5 mm. In order to evaluate the robustness of our methods under
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