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We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic
Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general
linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a
discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to
the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture
prior for thewavelet coefficients, themixture probabilities are related to the pattern of brain activity across different
resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at
the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a
prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the
hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values.
Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by
applying the inversewavelet transform to the posteriormeans of thewavelet coefficients. An application to com-
puter simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject
methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of
our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle
(2005) through a multi-subject fMRI study of working memory related brain activation.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Functional Magnetic Resonance Imaging (fMRI) experiments have
become a ubiquitous tool for the study of human brain activation
patterns. These activation patterns usually exhibit spatial dependence
that can be well modeled by including the spatial features as part of a
probabilistic model within a Bayesian framework (Badillo et al., 2011;
Bowman et al., 2008; Flandin and Penny, 2007; Gössl et al., 2001;
Groves et al., 2009; Harrison and Green, 2010; Harrison et al., 2008;
Ng et al., 2010a,b; Penny et al., 2003, 2005; Quirós et al., 2010a,b;
Smith et al., 2003; Vincent et al., 2010). In that regard, a particularly
effective Bayesian framework assigns spatial priors to the regression co-
efficients of a general linearmodel, such as for exampleGaussianMarkov
random field priors (Penny et al., 2005), wavelet basis priors (Flandin
and Penny, 2007), anatomical parcellation-based hierarchical Gaussian
priors (Bowman et al., 2008), and diffusion-based spatial priors
(Harrison et al., 2008). In particular, the wavelet basis priors of Flandin
and Penny (2007) are able to handle spatial variations in smoothness
and, as a consequence, better recover the original shapes of the activation
regions. However, the methodology of Flandin and Penny (2007) is re-
stricted to the analysis of single-subject fMRI data. Here, we build upon
their approach and develop a novel hierarchical multiscale Bayesian

analysis for data frommultiple subjects. Our methodology borrows infor-
mation across subjects and thus leads tomore precisely estimated activa-
tion maps.

Following the hierarchical approach of Flandin and Penny (2007),
we begin by modeling the brain images temporally with a standard
general linear model (GLM). The GLM accounts for the temporal in-
formation contained in the data. The estimated regression coefficient
images represent the spatial variation contained in the data. For the
sake of comparability across voxels, we standardize the estimated re-
gression coefficients using their standard deviation. Next, similar to
Flandin and Penny (2007), we transform the estimated standardized
regression coefficient images through a discrete wavelet transforma-
tion to obtain a sparse representation in the wavelet space. The use of
the wavelet transform captures the spatial variation across different
resolution levels. Subsequently, we assign to the wavelet coefficients
a prior that is a mixture of a point mass at zero and a Gaussian compo-
nent (Abramovich et al., 1998; Clyde et al., 1998). An important element
of this prior is the probability of the Gaussian component, that we refer
to as the mixture probability. Specifically, this is the prior probability
that a wavelet coefficient is different than zero. Previous works in the
literature (Abramovich et al., 1998; Clyde et al., 1998) usually assume
that themixture probabilities vary across scales but are constant across
locationswithin each scale. Herewe take a novel approach that assumes
that the mixture probabilities vary across locations within each scale.

We model the mixture probabilities using a hierarchical specifica-
tion that borrows information about the activation pattern within
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different resolution levels from multiple subjects. Specifically, as the
data are co-registered and normalized, the wavelet coefficients from dif-
ferent subjects at the same positionwithin a given resolution level corre-
spond to the same anatomical position. To incorporate this information
into the model, we assume that the mixture probabilities for wavelet
coefficients at the same location and level are common across subjects.
Furthermore, for the mixture probabilities, we consider a Beta prior
with shape parameters depending on resolution level.Weparameterize
these shape parameters in terms of a few hyperparameters that encode
howsparse is thewavelet decomposition across resolution levels. Finally,
the application of our methodology to a real dataset (Section 3.2) shows
that our methodology is able to identify the common activation pattern
at coarser resolutions across subjects and concurrently respects the
natural variability among subjects at finer resolution levels.

For the analysis of our hierarchical model, we develop an inference
procedure that is performed in three steps. In the first step, we develop
an empirical Bayes methodology to obtain estimates of the model
hyperparameters aswell as their standard errors. As shown in the appli-
cations in Section 3, these standard errors are orders of magnitude
smaller than the hyperparameter estimates. Because of their high esti-
mation precision, in the subsequent steps we take an empirical Bayes
approach, that is, we hold the hyperparameters fixed at their estimates.
Because the hyperparameters encode the sparsity of thewavelet decom-
position, in ourmethodology the degree of sparsity is estimated from the
data. In the second step, conditional on the estimated hyperparameters,
our approach leads to explicit posterior distributions for the wavelet
coefficients. Using these posterior distributions, we carry out inference
in thewavelet domain and obtain the posteriormean of thewavelet co-
efficients. Finally, in the third stepweobtain smoothed images of the re-
gression coefficients by applying the inverse wavelet transform to the
posteriormeans of thewavelet coefficients. These regression coefficient
maps can then be used to obtain group level posterior images. Finally,
for uncertainty assessment we develop a simulation-based method for
the computation of the posterior variance of the regression coefficients.

Our inferential approach is quite different and much faster than the
variational Bayes approach previously used in the literature (Flandin
and Penny, 2007; Penny et al., 2003, 2005). The variational Bayesmethod
estimates all the parameters jointly by approximating high dimensional
integrals. Moreover, the variational Bayes method can be seen as an
extension of the EM algorithm and, as such, may be slow to converge,
may converge to a local optimum, andmay underestimate the inferential
uncertainty. In contrast, as we show in Section 2.2, by taking an empirical
Bayes approachwe are able to solve exactlymost of the high-dimensional
integrals analytically. Further, in our approach the few integrals that
cannot be solved analytically are all one-dimensional and can be solved
numerically with arbitrary precision. Therefore, ourmethodology is fast
and quite accurate with respect to the characterization of the model
uncertainty.

A notable merit of our methodology is the development of an infer-
ence procedure that does not use Markov chain Monte Carlo (MCMC)
simulation. Many of the existing Bayesian methods of fMRI data analysis
perform inference usingMCMC simulation (Badillo et al., 2011; Bowman
et al., 2008; Costafreda et al., 2009; Genovese, 2000; Gössl et al., 2001;
Makni et al., 2008; Rajapakse and Zhou, 2007; Smith and Fahrmeir,
2007; Vincent et al., 2010; Woolrich et al., 2004, 2005). The use of
MCMC simulation makes multi-subject analysis computationally expen-
sive. Conversely, as we show in Section 2.2, in our workmost of the inte-
grals can be solved analytically. Moreover, in our work the integrals that
have to be approximated are all one-dimensional and, consequently, can
be solved numerically with arbitrary precision using fast numerical inte-
gration methods such as Newton–Cotes (Press et al., 1992). Considering
the usually large size of fMRI datasets, this feature of our methodology is
greatly useful and considerably reduces the cost of computation.

The use of the wavelet transform for the analysis of fMRI data has
been proposed in the literature in a number of works. Most of this pre-
vious literature applies the wavelet transform directly to the BOLD

response in the temporal domain (Alexander et al., 2000; Fadili and
Bullmore, 2002; Luo and Puthusserypady, 2008; Meyer, 2003;
Ruttimann et al., 1998; Sendur et al., 2005; Van De Ville et al., 2004;
Wink andRoerdink, 2004; Zaroubi andGoelman, 2000). Another possible
approach, proposed in the context of positron emission tomography
by Turkheimer et al. (2003, 2006) and that may be adapted for fMRI
studies, is to apply a 2D or 3D wavelet transform to the spatially dis-
tributed BOLD response at each time point. Then, the resulting wavelet
coefficients are related to the underlying physiological process through
a general linear model. Finally, a quite promising approach applies the
wavelet transform to the regression coefficients in the spatial domain
(Flandin and Penny, 2007; Long et al., 2004; Soleymani et al., 2009). In
particular, Flandin and Penny (2007) use wavelets to define a prior for
the regression coefficients obtained by fitting a GLM to the BOLD re-
sponse. However, while the methodology of Flandin and Penny (2007)
is for single-subject analysis, our methodology is for multi-subject anal-
ysis. See Bullmore et al. (2004), Van De Ville et al. (2006a) and
Wongsawat (2009) for comprehensive reviews of the use of wavelet
analysis for fMRI data.

The remainder of this article is organized as follows. Section 2 de-
scribes the model at different stages of the hierarchy, including the
choice of the prior and hyperparameters, the inference procedure in-
cluding estimation of the hyperparameters and the exact posterior
distribution for the empirical wavelet coefficients, and the posterior
reconstruction of the regression coefficient images. Section 3 presents
applications of our methodology to two datasets: a simulated dataset,
and a real dataset generated by Postle (2005) from an event-related
fMRI study of working memory related brain activation. Finally,
Section 4 contains an overall discussion of themerits of ourmethodology
and concluding remarks.

2. Theory

In this section,we describe the different components of our Bayesian
hierarchicalmulti-subjectmultiscalemodel alongwith the assumptions
made, the inference method in the wavelet domain, and finally the re-
construction of the images back to the regression coefficients space.
The probabilistic model along with the different parameters and their
dependencies is represented in a diagram in Fig. 1.

2.1. Model

2.1.1. Temporal model for the BOLD response
We start by modeling the BOLD response for each subject with a

standard general linear model (Friston et al., 1994). Specifically, the
whole volume of a subject's brain is divided into 3D volumetric pixels
or voxels. During a task that the subject performs, the whole brain is
scanned at multiple time points. Thus, corresponding to each voxel of
the brain, the experiment yields a time-series of BOLD response. For
the ith subject, i=1,…, I, we model the BOLD response as

yi ¼ Xiβi þ �i; ð1Þ

where yi is the T×N matrix of BOLD response, Xi is a T×K matrix of
regressors, βi is a K×N matrix of regression coefficients, i is a T×N
matrix of errors, T is the number of time points, N is the number of
voxels and K is the number of regressors.

Thenth columnof the datamatrix yi contains the BOLD response time
series for the nth voxel. In the case where there are multiple runs corre-
sponding to the ith subject, the time series for all the runs for a voxel are
stacked into a single column of the data matrix yi. For each subject, the
designmatrixXi is the same for all the voxels, and each column ofXi cor-
responds to the values of one regressor. The regressors considered in the
model are convolutions of indicator variables for each experimental con-
dition with an empirically derived subject-specific hemodynamic re-
sponse function. With this specification of the design matrix Xi, Eq. (1)
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