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Estimation and inferences for the hemodynamic response functions (HRF) using multi-subject fMRI data are
considered. Within the context of the General Linear Model, two new nonparametric estimators for the HRF are
proposed. The first is a kernel-smoothed estimator, which is used to construct hypothesis tests on the entire HRF
curve, in contrast to only summaries of the curve as in most existing tests. To cope with the inherent large data
variance, we introduce a second approach which imposes Tikhonov regularization on the kernel-smoothed
estimator. An additional bias-correction step, which uses multi-subject averaged information, is introduced to
further improve efficiency and reduce the bias in estimation for individual HRFs. By utilizing the common
properties of brain activity shared across subjects, this is the main improvement over the standard methods
where each subject's data is usually analyzed independently. A fast algorithm is also developed to select the
optimal regularization and smoothing parameters. The proposed methods are compared with several existing
regularization methods through simulations. The methods are illustrated by an application to the fMRI data
collected under a psychology design employing the Monetary Incentive Delay (MID) task.

© 2012 Elsevier Inc. All rights reserved.

Introduction

There is a vast literature in functional magnetic resonance imaging
(fMRI) data analysis on estimating the hemodynamic response function
(HRF) within the framework of the General Linear Model (GLM)
(Friston et al., 1995a, 1995b; Worsley and Friston, 1995). These
methods differ in their assumptions about the shape of the HRFs.
Standard parametric approaches assume a functional form for the HRF
with a number of free parameters, such as the canonical form of
mixtures of gamma functions (Friston et al., 1998; Glover, 1999;
Worsley et al., 2002), Poisson function (Friston et al., 1994), inverse
logit function (Lindquist and Wager, 2007), and radial basis functions
(Riera et al., 2004). Except for the model using the canonical form and
its derivatives, estimation for parametric models with even a moderate
number of parameters often relies on computationally-intensive
iterative methods (such as the Gauss–Newton method), which can
lead to unstable estimates when the algorithms do not converge (Liao,
et al., 2002). This paper alternatively focuses on nonparametric
approaches, which are flexible and usually fast to compute. Bai et al.
(2009) andWang et al. (2011) constructed nonparametric estimates of
the HRF in the frequency domain. Nonparametric methods in the time
domain mainly fall into two types: representing the HRF with a linear

combination of functional bases (Aguirre et al., 1998; Vakorin et al.,
2007; Woolrich et al., 2004; Zarahn, 2002), or treating the HRF at every
unit time point as a free parameter (Dale, 1999; Lange et al., 1999). In
this paper we adopt the latter approach in the time domain to develop
nonparametric estimation and inferences for HRFs.

Since nonparametric methods for HRF estimation involvemany free
parameters and the HRF is generally believed to be smooth (Buxton et
al., 2004), smoothing techniques are often employed. Kernel smoothing
is a popular nonparametric statistical method for increasing temporal
continuity of functional estimates (Eubank, 1988; Härdle, 1990). It has
been used for temporal smoothing of fMRI time series (e.g., Friston et al.,
1994; Worsley and Friston, 1995), but has rarely been used for HRF
estimation. In this paper, we first introduce a kernel-smoothed HRF
estimator, based on which we construct hypothesis tests on the entire
HRF curve, in contrast to the common practice of testing only some
characteristics of the HRF.

Regularization is another increasingly popular technique used in
nonparametric estimation that allows smoothness constraints to be
imposed on the HRF estimates. One example is the smooth finite
impulse response method (SFIR, Glover, 1999; Goutte et al., 2000;
Ollinger et al., 2001), which exploits a regularization term to obtain
smooth estimates that satisfy a boundary condition. Another example is
given in Marrelec et al. (2001, 2003), where the HRF is represented by
orthogonal functional bases and a smoothness constraint is imposed
through regularizing the norm of its second order derivative. Similarly,
representing the HRF by spline bases, Vakorin et al. (2007) and Zhang

NeuroImage 63 (2012) 1754–1765

⁎ Corresponding author at: Halsey Hall 111, University of Virginia, Charlottesville,
VA, 22904, USA. Fax: +1 434 924 3076.

E-mail address: tz3b@virginia.edu (T. Zhang).

1053-8119/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2012.08.014

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://dx.doi.org/10.1016/j.neuroimage.2012.08.014
mailto:tz3b@virginia.edu
http://dx.doi.org/10.1016/j.neuroimage.2012.08.014
http://www.sciencedirect.com/science/journal/10538119


et al. (2007) used Tikhonov regularization (Tikhonov and Arsenin,
1977). The estimator proposed by Casanova et al. (2008, 2009) combines
Tikhonov regularization and generalized cross validation (Wahba, 1990)
(referred to Tik-GCV hereafter), greatly reducing the computational
burden involved in parameter selection. Motivated by these develop-
ments, a second goal of this paper is to propose a new nonparametric
estimator that combines kernel smoothingwith Tikhonov regularization.
Distinct from previous methods, this approach controls the degree of
temporal smoothness and the norm of the estimates by two separate
parameters. This separation makes the estimator more adaptive to
different combinations of HRF temporal resolution and signal-to-noise
ratio (SNR).

In analyzing multi-subject fMRI data, many existing methods, both
parametric and nonparametric, estimate each subject's HRF indepen-
dently to account for its variability across subjects (Aguirre et al., 1998;
Handwerker et al., 2004).Whendata fromeach individual has a lowSNR,
utilizing the common characteristics of the HRFs shared across the
population may improve the estimation efficiency. Moreover, for such
data, though a strong scale of regularization is effective in stabilizing
estimates, it also introduces additional biases. Thus, bias correction can
be considered to improve over the regularized estimates (e.g., Zhang et
al., 2007). Assuming that, under the same stimulus and in the same brain
regions, the HRFs have similar functional shapes across subjects (Friston
et al., 1998; Handwerker et al., 2004), we propose to use sample-
averagedHRF estimates to conduct bias correction for the regularization-
based estimates. A fast algorithm is developed to select regularization
and smoothing parameters and to evaluate the new estimators. Through
simulations, the proposed bias-corrected estimator demonstrates signif-
icant improvement over the estimators without the bias-correction step.

The article is organized as follows. In the Materials and methods
section, we briefly review the GLM framework and propose the
nonparametric kernel-smoothed estimator for hypothesis testing on
the whole curve of the HRF. We then refine the estimator by adding
Tikhonov regularization and applying bias correction. Two fast
algorithms for parameter selection are also developed. The Results
section presents results from applying the proposed methods to both
simulated data and real fMRI data, and comparisons are drawn to
several existing methods. The Conclusions section concludes with a
discussion.

Materials and methods

The GLM

We conduct massive univariate analysis of fMRI data in the
context of the GLM. Since the same approach applies to each voxel,
the subscript for voxel is omitted here. Let yi(t) for t=1,⋯,T and i=1,
⋯,N be the fMRI time series for a pre-specified voxel of subject i,
where T is the total observation time and N is the number of subjects.
Suppose the design has K stimuli. Let vi,k(t) be the kth (k=1,⋯,K)
stimulus function for subject i with vi,k(t)=1 if the stimulus is
evoked at time t and 0 otherwise. The GLM represents the observed
fMRI time series as a convolution of the HRF and the stimuli:

yi tð Þ ¼ ∑K
k¼1∫m

0 hi;k uð Þvi;k t−uð Þduþ εi tð Þ, where hi,k is the HRF of the
pre-specified voxel in subject i under stimulus k, m is a known
positive constant beyond which the HRF equals zero, and εi(t) is an
identically-distributed error term. The blood oxygen level depen-
dent (BOLD) fMRI signal often contains a low-frequency drift due to
physiological noise or subject motion (Brosch et al., 2002; Luo and
Puthusserypady, 2008; Smith et al., 1999); this can be modeled by
adding a polynomial term of time t (Lindquist, 2008; Mattay et al.,
1996; Worsley et al., 2002) to the above GLM as

yi tð Þ ¼ d0;i þ d1;i⋅t þ d2;i⋅t
2 þ

XK

k¼1

∫m
0 hi;k uð Þvi;k t−uð Þduþ εi tð Þ; ð1Þ

where the drift parameters d0,i,d1,i, and d2,i are allowed to vary across
subjects.

Kernel-smoothed nonparametric estimator

We treat each HRF at every unit time as a free parameter. Let Δ be
the time unit representing the discretization of the HRF temporal
resolution. Since it is possible to have the temporal resolution of the
HRF shorter than that of the fMRI data (Casanova et al., 2008; Ciuciu
et al., 2003), Δ can be smaller than the repetition time unit (TR) of the
experimental design. For each subject i, let Yi=(yi(1),…,yi(T)) ' be
the observed fMRI time series. Denote the discretized values of the

HRF under stimulus k by βi,k=(βi,k(1),⋯,βi,k(m)) ', where βi;k tð Þ ¼
∫t⋅Δ

t−1ð Þ⋅Δ hi;k uð Þdu in a block design or βi,k(t)=hi,k(t ⋅Δ) in an event-
related design (Josephs et al., 1997). Let βi=(βi,1

' ,⋯,βi,K
' ) '. Denoting all

the coefficients (d0,i,d1,i,d2,i,βi′) ' by ηi, the GLM Eq. (1) can be written
in a matrix form as

Y i ¼ Xiηi þ εi; ð2Þ

where Xi is the design matrix corresponding to the time covariates and
the stimulus functions for subject i, and εi=(εi(1),⋯,εi(T)) ′∼N(0,σ i

2Σi)
with unknown variance σi

2 and correlation matrix Σi. Since hi,k(t) is
random across subjects, the coefficients βi are also random. As a result,
model (2) is a linear random-effect model. For each subject, we can
remove the drift term through ordinary least square (OLS) regression
and obtain an unbiased OLS estimate of βi, denoted by

β̂ i ¼ β̂ i;1 1ð Þ; ⋯; β̂ i;1 mð Þ; β̂ i;2 1ð Þ; ⋯; β̂ i;K mð Þ
� �′

. As noted in Goutte et al.

(2000), β̂ i usually has an artificial high-frequency noise due to the large
number of parameters under estimation and experimental designswith
interleaved stimuli and inter-stimulus intervals. This can be clearly seen
from the simulation example in Fig. 2(a). Therefore, smoothing
techniques are often employed to reduce the unnatural ruggedness of
the estimates.

Previous approaches have typically applied temporal smoothing
directly to yi(t) to increase the statistical power for detecting responsive
regions (e.g., Friston et al., 1994, 1995b;Worsley and Friston, 1995). The
HRFs are generally believed to be smooth (e.g., Buxton et al., 2004);
while smoothing the HRF estimated from the fMRI time series
guarantees the smoothness of the resulting curve, directly smooth-
ing the original fMRI times series does not, especially in complex
designs with multiple stimuli. Since our interest lies in estimating
the HRF and the degree of smoothness may vary across HRFs under
different stimuli, we choose to conduct kernel smoothing on the OLS
estimates β̂ i. Specifically, we propose to use the Nadaraya–Watson
kernel estimator:

~β i;k tð Þ ¼
Xtþl

u¼t−l

Wt;u⋅β̂ i;k uð Þ; with Wt;u ¼ f t−u
h

� �
=h

∑tþl
u¼t−l f t−u

h

� �
=h

: ð3Þ

Here h is a pre-specified bandwidth controlling the degree of
smoothing, f(t) is a given symmetric density function (kernel), and l is
a pre-specified constant giving an upper bound on the number of data
points used for the estimation. In this article, we let f(t) be a standard
Gaussian density and l=m. Existing results suggest that the choice of
these two values has only a small effect on the estimation (Eubank,
1988; Härdle, 1990). The choice of the key bandwidth parameter h is
elaborated in Algorithms for parameter selection section. The
underlying idea of kernel smoothing is to borrow information from
the neighboring data: the estimate ~β i;k tð Þ is a weighted average of the
neighboring OLS estimates and the weight Wt,u is negatively correlated
with the distance |u−t|. The boundary condition ofβi,k(t)=0 for tb0 and
t>m is imposed by setting β̂ i;k uð Þ ¼ 0 for ub1 and u>m in the estimator
(3). Letting β̂ i;k ¼ β̂ i;k 1ð Þ; ⋯; β̂ i;k mð Þ

� �0
and ~β i;k ¼ ~β i;k 1ð Þ; ⋯; ~β i;k mð Þ

� �0
,
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