Neurolmage 60 (2012) 1778-1787

journal homepage: www.elsevier.com/locate/ynimg

Contents lists available at SciVerse ScienceDirect

Neurolmage

Construction of a neuroanatomical shape complex atlas from 3D MRI brain structures

Ting Chen ?, Anand Rangarajan **, Stephan J. Eisenschenk °, Baba C. Vemuri **

¢ Department of CISE, University of Florida, Gainesville, FL 32611-6120, USA
b Department of Neurology, University of Florida, Gainesville, FL 32611, USA

ARTICLE INFO

Article history:

Received 23 June 2011

Revised 14 January 2012
Accepted 18 January 2012
Available online 28 January 2012

Keywords:

Brain MRI

Shape complex atlas
Epilepsy

Lobectomy

Distance transform
Schrodinger equation
Karcher mean

Level set
Square-root density

Introduction

ABSTRACT

Brain atlas construction has attracted significant attention lately in the neuroimaging community due to its
application to the characterization of neuroanatomical shape abnormalities associated with various neurodegen-
erative diseases or neuropsychiatric disorders. Existing shape atlas construction techniques usually focus on the
analysis of a single anatomical structure in which the important inter-structural information is lost. This paper
proposes a novel technique for constructing a neuroanatomical shape complex atlas based on an information
geometry framework. A shape complex is a collection of neighboring shapes - for example, the thalamus,
amygdala and the hippocampus circuit - which may exhibit changes in shape across multiple structures during
the progression of a disease. In this paper, we represent the boundaries of the entire shape complex using the
zero level set of a distance transform function S(x). We then re-derive the relationship between the stationary
state wave function ys(x) of the Schrédinger equation —#2V 2y +¢=0 and the eikonal equation ||V S||=1
satisfied by any distance function. This leads to a one-to-one map (up to scale) between ¢s(x) and S(x) via an
explicit relationship. We further exploit this relationship by mapping {s(x) to a unit hypersphere whose
Riemannian structure is fully known, thus effectively turn ¢s(x) into the square-root of a probability density
function. This allows us to make comparisons - using elegant, closed-form analytic expressions - between
shape complexes represented as square-root densities. A shape complex atlas is constructed by computing the
Karcher mean ¢ (x) in the space of square-root densities and then inversely mapping it back to the space of
distance transforms in order to realize the atlas shape. We demonstrate the shape complex atlas computation
technique via a set of experiments on a population of brain MRI scans including controls and epilepsy patients
with either right anterior medial temporal or left anterior medial temporal lobectomies.

© 2012 Elsevier Inc. All rights reserved.

(Fletcher et al., 2004; Liu et al., 2008; Wang et al., 2006) which do not
contain any inter-structural information. For example, the spatial

Human brain MRI analysis is an important problem due to its
application in the diagnosis and treatment of neurological diseases. In
this context, the construction of neuroanatomical atlases of the
human brain is of particular interest and its importance has been
emphasized in a number of recent studies (Aljabar et al, 2009;
Sabuncu et al., 2009; Shattuck et al., 2008; Yeo et al. 2008). In brief, an
atlas provides a reference for a population of shapes/images which is
useful in numerous applications: (i) statistical analysis of volumetric
changes in control and patient populations, (ii) atlas-guided segmenta-
tion of structures of interest which is needed in further diagnostic
procedures, and (iii) automated detection of disease regions based
on shape variations between the atlas and individual subjects. Most
existing shape atlases are based on isolated, single anatomical shapes
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relationships among different neighboring structures may change due
to the effect of non-uniform volume shrinkage or expansion of neigh-
borhood structures. Furthermore, many neurological disorders are
diagnosed by the structural abnormalities (e.g. volume change)
ascribed to several brain structures rather than a single structure.
Alzheimer's disease is an example of such a neurological disorder—a
morphological marker for which is the enlargement of ventricles and
the shrinkage of the entorhinal cortex, amygdala and hippocampi
(Brice, 2009). Mania, which is most often associated with bipolar disor-
der serves as another example. In Strakowski et al. (1999), all the brain
structures associated with the neural pathways were examined and the
authors claimed that patients with mania have a significant overall
volume difference in the regions including the thalamus, hippocampi
and the amygdala. In Seidman et al. (1999), the authors concluded
that the structural abnormalities in the thalamus and the amygdala-
hippocampus regions represent remarkable anatomical vulnerabilities
in schizophrenia subjects. Therefore, a neuroanatomical shape complex
atlas which captures anatomical connectivity as well as inter-structural
relationships is of primary clinical importance.
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Previous work

In the context of atlas construction for multiple brain structures,
most of the efforts in the past were focused on building the full brain
image probabilistic atlases. For instance, in Joshi et al. (2004), Avants
and Gee (2004), Shi et al. (2010), and Xie et al. (2010), several image
atlas construction methods for the entire brain were proposed based
on the acquisition of 3D brain MR scans. The traditional techniques for
image atlas construction usually focus on developing effective image
deformation methods to register a population of brain images. Subse-
quently (or in tandem), the atlas image is estimated as an average
over the registered image population. More recent works are based on
developing specific techniques for mean computation. For example, in
the multi-regional atlas (Shi et al., 2010), the region specific mean is
estimated whereas in Xie et al. (2010), the geodesic mean of a popula-
tion of brain images is computed via an intrinsic averaging method. The
brain image atlas has its advantage in general brain analysis. The varia-
tions of the entire brain due to aging can be studied (Sabuncu et al.,
2009) and the segmentation of brain structures (via registration of the
atlas) achieved (Joshi et al., 2004) with the aid of the whole brain
image atlas. However, image registration (and hence the analysis based
on it) may not be accurate for particular structures of interest due to the
misalignment caused by the overall deformation of the convoluted cortex
with its gyrencephalic details. Furthermore, it is a non trivial task to ex-
tend these techniques to shape atlas construction. Consequently, we
will forgo further discussion of image based atlases in this paper and re-
strict our focus to shape based atlas construction. A shape atlas is of
great importance when the analysis is focused on a certain structure
or a neural pathway containing several related structures in the brain:
examples are the diseases associated with hippocampi and amygdala.

Feature point-sets (or landmarks when specific identities are
ascribed to the features) are one of the most common shape represen-
tations in the literature. Unbiased atlas construction of hippocampi via
groupwise point-set registration of mixture model probability density
functions is described in Chen et al. (2010b), Wang et al. (2008), and
Chui et al. (2004). While explicit point to point correspondences are
recovered in Chui et al. (2004), information-theoretic methodologies
are adopted in Chen et al. (2010b) and Wang et al. (2008) resulting in
implicit correspondence. In Cootes et al. (2008), a statistical shape
model is directly constructed on diffeomorphic deformation fields.
Other methods that represent shapes in 2D using parametric curves
and in 3D using parametric surfaces have also received considerable
attention in the literature (Klassen et al., 2004; Sebastian et al., 2003).
Since intrinsic statistical shape analysis in the space of curves/surfaces
is in general a non trivial task, methods using this representation have
traditionally resorted to computing means etc. of spline parameters. In
Styner et al. (2003), a characteristic 3D shape model dubbed the
M-rep was proposed, and based on this representation, a mathematical
characterization of the space of M-reps was developed. An atlas was
then constructed in this space via computation of the geodesic mean
of a population of shapes represented by M-reps (Fletcher et al.,
2004). Recent work in Liu et al. (2008) describes an interesting model
using continuous spherical shapes to analyze the anatomical shape
differences in the hippocampus of a control group and blind subjects.

To summarize, in all the techniques discussed thus far, the shape
atlas is developed only for an isolated anatomical structure and it is
difficult to generalize these methods to multiple connected anatomical
structures in a neighborhood. A shape complex analysis algorithm was
proposed in Cates et al. (2008), where the shapes are represented by
point sets and the correspondences across the shape complexes are
optimized via minimizing an entropy based cost function. Although
this model leads to straightforward statistical shape analyses, it has to
resort to a gradient descent strategy for the optimization. In
Gorczowski et al. (2007) and Qiu and Miller (2008) multi-object shape
analysis frameworks were presented where each shape of the “multi-
object” had an independent representation, and hence extra

information on the structural relationships between different shapes
needed to be maintained. In Litvin and Karl (2005), a multi-object
shape distribution was used as a prior for 2D image segmentation,
wherein the distribution of a set of shapes is defined as the average of
the distribution corresponding to the individual shapes in the group.
This method does extract features from a shape complex but this
shape information is lost after averaging.

Before we turn to the actual approach in this work, we briefly
describe the role of the correspondence problem in atlas estimation.
Groupwise non-rigid registration is used in previous work (Chen et al.,
2010b; Wang et al,, 2008; Chui et al., 2004) for atlas computation. If ex-
plicit point-to-point correspondences can be recovered from groupwise
non-rigid registration, then an atlas can be subsequently computed by
averaging over corresponding point locations. In contrast, in this work
we quotient out an appropriate transformation (rigid, similarity, affine)
prior to atlas computation in the space of distance transforms. Conse-
quently, our approach avoids the correspondence problem but the
computed atlas now depends on the spatial mapping that is quotiented
out. Since distance transforms represent shapes implicitly (rather than
explicitly), our approach can be used even in situations where topolog-
ical differences exist - a common situation in shapes extracted from
brain MRI - whereas correspondence-based approaches are notorious-
ly problematic when topological differences are present.

In this paper, we propose a novel technique for constructing the
atlas of a neuroanatomical shape complex consisting of multiple neu-
roanatomical structures where the inter-structural relationships are
captured implicitly without any loss of information of any of the con-
stituent structures. In our framework, we first use the zero level set of
the distance transform function to represent the boundaries of the
entire shape complex and based on the mathematical relationship de-
rived in the section below entitled Shape complex atlas, we then map
the distance transform functions to the space of square-root densities
where a geodesic mean (atlas) is computed. Finally, the actual shape
complex atlas is realized via the inverse map back to the space of dis-
tance transforms.

The key contributions of this paper are as follows: (i) We derive a
novel relationship between the stationary state wave function {s(x)
of the Schrédinger equation and the eikonal equation ||V S||=1 for
the Euclidean distance transform problem, which serves as a “bridge”
that connects the distance transform representation of the shape to
the space of square-root-densities. (ii) The inter-structural relation-
ships are well captured in our distance transform representation of
the shape complex, which is of great clinical importance for studying
the shape variations across multiple structures in both ontogenesis
and in various neurological diseases. (iii) We represent shape com-
plexes using square-root densities. Since the manifold of square-
root density functions is a unit Hilbertian sphere and its geometry is
well understood, it allows us to use intrinsic geometry to compare
shape complexes and carry out a statistical analysis of them.

The rest of the paper is organized as follows: In the Shape complex
atlas section, we present the details of our shape complex atlas con-
struction methodology. We demonstrate our technique in the
Experiments section on a 2D shape complex data set comprising the
corpus callosum, brainstem and the cerebellum (taken from the mid-
sagittal plane) and 3D brain structures including left/right hippocam-
pus, entorhinal cortex, amygdala and thalamus. The data are from a
population of 46 3D brain MR scans with all the neuroanatomical
structures labeled by an expert neurologist.

Shape complex atlas

In this section, we derive the relationship between distance trans-
form function and the square-root density representation, which allows
us to model the shape complex in the square-root density space,
perform the statistical analysis of the shapes and recover the mean
shape back in the distance transform function space.
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