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Fully automated machine learning methods based on structural magnetic resonance imaging (MRI) data can
assist radiologists in the diagnosis of Alzheimer's disease (AD). These algorithms require large data sets to
learn the separation of subjects with and without AD. Training and test data may come from heterogeneous
hardware settings, which can potentially affect the performance of disease classification.
A total of 518 MRI sessions from 226 healthy controls and 191 individuals with probable AD from the
multicenter Alzheimer's Disease Neuroimaging Initiative (ADNI) were used to investigate whether grouping
data by acquisition hardware (i.e. vendor, field strength, coil system) is beneficial for the performance of a
support vector machine (SVM) classifier, compared to the case where data from different hardware is mixed.
We compared the change of the SVM decision value resulting from (a) changes in hardware against the effect
of disease and (b) changes resulting simply from rescanning the same subject on the same machine.
Maximum accuracy of 87% was obtained with a training set of all 417 subjects. Classifiers trained with 95
subjects in each diagnostic group and acquired with heterogeneous scanner settings had an empirical
detection accuracy of 84.2±2.4%when tested on an independent set of the same size. These results mirror the
accuracy reported in recent studies. Encouragingly, classifiers trained on images acquired with homogenous
and heterogeneous hardware settings had equivalent cross-validation performances. Two scans of the same
subject acquired on the same machine had very similar decision values and were generally classified into the
same group. Higher variation was introduced when two acquisitions of the same subject were performed on
two scanners with different field strengths. The variation was unbiased and similar for both diagnostic groups.
The findings of the study encourage the pooling of data from different sites to increase the number of training
samples and thereby improving performance of disease classifiers. Although small, a change in hardware
could lead to a change of the decision value and thus diagnostic grouping. The findings of this study provide
estimators for diagnostic accuracy of an automated disease diagnosis method involving scans acquired
with different sets of hardware. Furthermore, we show that the level of confidence in the performance
estimation significantly depends on the size of the training sample, and hence should be taken into account in
a clinical setting.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Fully automated methods detecting presence or absence of
Alzheimer's disease (AD) based on structural magnetic resonance
imaging (MRI) data can help radiologists (Klöppel et al., 2008;Magnin
et al., 2009; Plant et al., 2010; Vemuri et al., 2008). AD is associated
with formation of extracellular amyloid immunoreactive senile
plaques and tau immunoreactive neurofibrillary tangles (Braak and
Braak, 1991). It is also associated with progressive atrophic changes
that can be detected by structural MRI. Subjects with AD typically
show patterns of gray matter (GM) atrophy involving the medial
temporal lobe, particularly the hippocampus and entorhinal cortex,
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among other brain regions, with simultaneous expansion of the
ventricles (Baron et al., 2001; Fox et al., 1996; Jack et al., 1992;
Whitwell et al., 2007). Due to the characteristic atrophy pattern, the
GM is an informative biomarker to detect AD with structural MRI
(Klöppel et al., 2008; Magnin et al., 2009; Vemuri et al., 2008).

An increasing number of multi-center studies aim to combine data
from different scanners to increase statistical power and fields of
applications. Studies suggest that data from different sites can be
pooled, but at the same time that systematic inter-scanner differences
can occur. Stonnington et al. (2008) compared the variation of data
acquired on six distinct scanners of same vendor/type on a voxel-by-
voxel level with a mass univariate test on GM probability maps and
concluded that the effect of AD is significantly larger than the inter-
scanner effects. On the other hand, several studies indicate that the
effects of inter-scanner variability are far greater than intra-scanner
variability (Huppertz et al., 2010; Moorhead et al., 2009). Similarly,
bias field correction and variation in image quality such as signal to
noise ratio (SNR) have an impact on the segmentation (Acosta-
Cabronero et al., 2008; Klauschen et al., 2009; Shuter et al., 2008).
Previous classification methods detecting presence of AD from
structural MRI data indicate that performance improved when a
high number of samples were used for training (Franke et al., 2010;
Klöppel et al., 2009). This may entail the need to pool data from
different manufacturers and hardware settings.

The Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller
et al., 2005) is a large, multi-center, multi-vendor study that acquires
structural MRI of cognitively normal healthy controls (CN), mild
cognitive impaired (MCI) and AD-probable (AD-p) elders. The ADNI
protocols on each scanner type are adjusted such that all sites report
comparable results at all times (Jack et al., 2008). Intensive quality
control and the use of a phantom, assure low inter-scanner variation
and high stability of the image quality (Gunter et al., 2009).

In this study we used data from 56 different sites that participated
in the ADNI study to assess the change in detection performance of an
AD classifier trained with images acquired either with homogenous or
heterogeneous hardware. As in previous work (Klöppel et al., 2008),
we used a fully automated processing pipeline and a support vector
machine (SVM) classifier (Vapnik, 1998). The process that computes
spatially normalized GM probability maps in a common template
space from structural T1MRI images was found to outperform other
approaches in a recent comparison using multi-site data from ADNI
(Cuingnet et al., 2011). We set out to investigate the impact of
heterogeneity of the acquisition hardware on the classifier outcome.
First, as coarsemeasure of theperformance,we computed the accuracy
of classifiers trained on homogenous hardware (pure set). Then we
computed the ranges of accuracies that can be expected from
classifiers trained on randomly selected images from heterogeneous
hardware (mixed sets) with the same sample sizes as the pure sets.
These distributions were then compared to the previously observed
accuracies of each pure set. Second, in order to quantify hardware-
related effects we introduced the analysis of the SVM decision value.
Positive values indicated AD-p and negative values indicated CN.
Ideally, the decision value should depend only on the subject, not on
the hardware. The further away from zero, the higher is the confidence
of the classifier in its decision. With the intention to determine the
minimal uncertainty of this value due to acquisition noise and pre-
processing, we quantified the variation of the decision value between
back-to-back scans of subjects. Thenwe quantified the variation of the
decision value between scans of same subjects on both field strengths.

Materials

Participants and image acquisition

Our data included T1-weighted MR images from 417 individuals of
which 226 were cognitively normal healthy controls (Mini-mental

state examination (MMSE): 29.1±1.0, age: 76.1±5.0) and 191 had
probable AD (MMSE: 23.3±2.1, age: 75.5±7.5). All images were
obtained from ADNI. Inclusion criteria for participants were according
to the protocol described in http://www.adni-info.org/scientists/
AboutAdni.aspx#. Individuals assigned to the AD-p group met
NINCDS/ADRDA criteria for probable AD (McKhann et al., 1984). We
first selected all ADNI CN and AD-p subjects with a baseline MRI scan
(all were scanned on 1.5 T, a subset also on 3 T). We excluded 2 AD
subjects that progressed to some other dementia during follow-up.
The median follow-up time for all patients was 24 months. The
interquartile ranges (IQR) by field strength are listed here: 1.5 T–IQR:
24–36 months and 3 T–IQR: 24–31 months. Three subjects were
further excluded because the required baseline images were not
available. A total number of 417 subjects were included. The list of all
images is attached in the supplementary material. T1-weighted
sagittal volumes were obtained using the magnetization-prepared
rapid gradient-echo (MP-RAGE) pulse sequence with imaging
parameters TR=2300 ms, TI=900 ms, flip-angle=9°at 3 T (and
TR=2400 ms, TI=1000 ms, flip angle=8°at 1.5 T) minimum full
TE, sagittal slices=160. All 1.5 T subject acquisitions used
1.25×1.25 mm2 in-plane spatial resolution and 1.2-mm thick sagittal
slices. The 3 T subject acquisitions also used 1.2-mm thick sagittal
slices, but were acquired with 1.0×1.0 mm2 in-plane spatial
resolution. Back-to-back scans were acquired from each subject
within each scanning session and an image analyst at Mayo clinic
rated the image quality of each scan. Quality criteria included
blurring/ghosting, flow and susceptibility artifacts. For the analysis
based on accuracy we included the ADNI baseline scan (Timepoint
1) with the best quality rating to avoid misclassifications due to low
quality, e.g. caused by motion artifacts. For the analysis of the
impact when changing field strength, we included further 192 back-
to-back scans with a lower or equal quality compared to the other
image acquired at the same session. The ADNI structural brain
imaging data can be downloaded with or without certain proces-
sing steps applied (see http://www.loni.ucla.edu/ADNI/Data/
ADNI_Data.shtml). Availability of pre-processing steps depends on
manufacturer and coil system (Jack et al., 2008). We included
images that were corrected for system-specific image geometry
distortion due to gradient non-linearity (GradWarp) and, if
available, additional image intensity non-uniformity (B1 correc-
tion).We excluded subjects with diagnosed MCI to reduce biological
variability, as this diagnostic group is arguably the most heteroge-
neous. The scanner configurations considered were (a) manufac-
turer, namely Siemens Healthcare, GE Healthcare and Philips
Medical Systems, (b) magnetic field strength, namely 1.5 T and
3 T, and (c) coil system, namely single-channel birdcage coils (BC)
and multi-channel phased-array head coils (PA). We focused on
these parameters as they were explicitly taken into account during
the establishment of the MRI protocols for the ADNI study (Jack
et al., 2008). Other configurations like scanner software version,
detailed coil configuration or coil type were not considered.
Platform-specific lists of sequence parameters are available at
http://www.loni.ucla.edu/ADNI/Research/Cores/.

Each of the 417 individuals had a baseline scan at 1.5 T. Among
these, 101 participants had a second scan within 2 to 102 days (24±
15 days) in a scanner with 3 T. For the rest of the article, we will refer
to the 316 images of higher quality of individuals that did not have a
scan at 3 T as SOLO_1.5 T and we will refer to the two sets of 101
images from individuals that had an image at both magnetic field
strengths as PAIR_1.5 T and PAIR_3.0 T respectively. All resulting 26
subgroups are listed in Supplementary Table 1. There was a trend
towards age difference in two of these groups. The subgroup with
lowest MMSE of the AD-p group had 22.6±2.0 [18–26], and the
highest MMSE score of AD-p group was 24.1±2.2 [20–28] (p=0.03).
No significant differences in the MMSE between control groups were
observed.
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