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In everyday life, successful decision making requires precise representations of expected values. However,
for most behavioral options more than one attribute can be relevant in order to predict the expected reward.
Thus, to make good or even optimal choices the reward predictions of multiple attributes need to be
integrated into a combined expected value. Importantly, the individual attributes of such multi-attribute
objects can agree or disagree in their reward prediction. Here we address where the brain encodes the
combined reward prediction (averaged across attributes) and where it encodes the variability of the value
predictions of the individual attributes. We acquired fMRI data while subjects performed a task in which they
had to integrate reward predictions from multiple attributes into a combined value. Using time-resolved
pattern recognition techniques (support vector regression) we find that (1) the combined value is encoded
in distributed fMRI patterns in the ventromedial prefrontal cortex (vmPFC) and that (2) the variability of
value predictions of the individual attributes is encoded in the dorsolateral prefrontal cortex (dlPFC). The
combined value could be used to guide choices, whereas the variability of the value predictions of individual
attributes indicates an ambiguity that results in an increased difficulty of the value-integration. These results
demonstrate that the different features defining multi-attribute objects are encoded in non-overlapping
brain regions and therefore suggest different roles for vmPFC and dlPFC in multi-attribute decision making.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Successful decision making requires precise anticipatory repre-
sentations of the reward values that can be obtained from choosing
specific behavioral options. However, in everyday life most decision
alternatives consist of multiple reward-related attributes. For in-
stance, different attributes of a fruit–size, shape, color and surface
texture–signal parts of its nutritional value. To make an optimal
choice i.e. to pick the fruit with the highest expected value, the reward
predictions of all attributes need to be integrated into a combined
value. To describe such decision processes, Multi-Attribute Utility
Theory (MAUT) was developed by behavioral decision researchers in
the 1970s (Slovic et al., 1977; von Winterfeldt and Fischer, 1975).

Neuroscience has mainly focused on decisions regarding single-
attribute options (Daw et al., 2006; Glascher et al., 2009; Hampton
et al., 2006; Kim et al., 2006; O'Doherty et al., 2003b). Studies on
multiple attributes have typically directly investigated the trade-off
between two attributes such as taste vs. health (Hare et al., 2009),
amount of money vs. delay (Kable and Glimcher, 2007) and pleasure
of acquisition vs. price (Knutson et al., 2007). Furthermore, studies on

decisions between real-life objects (comprising multiple attributes)
typically did not address their multiple-attribute character explicitly
(Chib et al., 2009; FitzGerald et al., 2009; Hare et al., 2009; Knutson
et al., 2007; Plassmann et al., 2007). One study aimed to identify brain
regions involved in experimentally controlled multi-attribute deci-
sions (Zysset et al., 2006). In this study, however, only the attribute-
wise similarity between alternatives i.e. the difficulty of the decision
was examined. Taken together, although single- and two-attribute
decisions have been studied, no study has moved beyond two
attributes and comprehensively investigated how such multi-attri-
bute objects are represented in the brain.

Each attribute of a multi-attribute object can have its own
predictive information for reward. Importantly, different attributes
of the same object can signal different or even conflicting reward
values. For instance, for one object all attributes could signal an
intermediate value, whereas for another object different attributes
could signal high and low values. Thus, although both objects have the
same combined value (i.e. intermediate) the multi-attribute objects
would differ considerably in the variability of the rewards predicted
by their individual attributes (i.e. low vs. high). Hence, unlike single-
attribute objects, different multi-attribute objects can differ not only
in their expected value but also in the variability of the rewards
predicted by their attributes. In order to understand how decisions are
made on the basis of multi-attribute objects we investigated how the
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combined value and the variability of the rewards predicted by the
individual attributes are represented in the human brain.

Recently we have shown that expected values can be decoded
from distributed fMRI patterns in the ventromedial prefrontal cortex
(vmPFC) (Kahnt et al., 2010). This distributed coding is consistent
with reports from single-unit recordings showing that different
neural populations in value sensitive cortex increase and decrease
their firing rate with increasing reward value, respectively (Kennerley
et al., 2009; Kobayashi et al., 2010; Morrison and Salzman, 2009;
Padoa-Schioppa and Assad, 2006; Schoenbaum et al., 2007). Previous
experimental and theoretical work on the human visual system has
revealed that applying multivariate pattern analysis (MVPA) techni-
ques to fMRI data is specifically suited to extract information encoded
in distributed neural populations (Haynes and Rees, 2005, 2006;
Kamitani and Tong, 2005; Norman et al., 2006). Similarly, information
about cognitive and decision processes has been shown to be encoded
in distributed fMRI patterns in the prefrontal cortex (PFC) (Hampton
and O'Doherty, 2007; Haynes et al., 2007; Soon et al., 2008). Thus, it
might be expected that distributed fMRI patterns contain more
information about the combined value of multi-attribute objects and
the variability of rewards predicted by individual attributes than the
average fMRI signal. Hence, here we used MVPA techniques (Haynes
and Rees, 2006; Norman et al., 2006) to decode information about
these two variables.

Materials and methods

Participants

Sixteen right-handed subjects (8 female, mean age=26.4±
1.06 years SEM) participated in the experiment. Subjects had normal
or corrected-to-normal vision and gave written informed consent to
participate. The study was approved by the local ethics review board
of the Charité-Universitätsmedizin Berlin.

Classical conditioning session

In all experiments we used objects that could vary in three visual
attributes shape, color and coherence of moving dots with three levels
per attribute. In the days prior to scanning (mean 3.19±0.31 SEM)
participants performed a classical conditioning session, where they
learned the association between single-attribute objects and different
reward values (magnitudes of monetary outcomes). For this behav-
ioral session the objects had only a single feature that varied across
three levels, thus resulting in 9 stimuli (3×shape+3×color+
3×coherence). The three different shapes (diamond, octagon and
dodecagon) were presented in white color on black background, the
three colors (green, turquoise and blue) were presented in squares on
black background and the three coherence levels of moving dots (5%,
35% and 95% coherence) were also presented in white squares on
black background (Fig. 1B). The three levels of each attribute were
associated with increasing magnitudes of monetary outcomes (0.10 €,
0.20 € and 0.30 €). An example pairing is shown in Fig. 1B; the actual
pairings were counter-balanced across subjects and gender. During
conditioning, in each trial one single-attribute object (e.g. a green
square indicating 0.10 €) was randomly selected and presented for
2000 ms followed by the presentation of its monetary value
(1000 ms). Subjects were told that they will receive the money after
the experiment. Each stimulus was presented 10 times, resulting in 90
conditioning trials.

Scanning session

In each trial of the fMRI experiment (Fig. 1A), one level of every
single-attribute was combined into amulti-attribute object (e.g. shape:
octagon indicating 0.20 €, color: blue indicating 0.30 € and coherence:

5% indicating 0.10 €) and presented for 2000 ms. After a variable delay
(4000–8000 ms) subjects were asked to rate the combined value of
that object on a continuous, circular rating scale (without labeling)
using an MRI compatible trackball. Once the rating was made the
cursor was blocked and the rating scale stayed presented for a total of
2500 ms (maximum rating time). In the scanning session the objects
consisted of combinations of all three attribute levels, thus resulting in
27 different multi-attribute objects (3×3×3=27). Each was pre-
sented two times in each of the 4 scanning runs. Subjects were
informed that they would receive 50% of the combined value (sum of
single-attribute values) of each multi-attribute object they evaluated
during the experiment. Before scanning, subjects repeated the
conditioning procedure described above and practiced on the circular
rating scale. Furthermore, they went through one run (54 trials) of the
experiment as a practice.

Fig. 1. Experimental design. (A) Example trial of the task used in the scanner. In each
trial one multi-attribute object was presented for 2 s. After a variable delay of 4–8 s
subjects had to rate the combined value of the object (maximum rating time 2.5 s).
Trials were separated by a variable interval of 3.5–7.5 s. To avoid motor preparation and
confounds related to the motor component of the rating, a circular rating scale with
randomized orientation was used. (B) Example of associations between single
attributes and rewards. Different rows indicate the attributes shape, color and
coherence (of moving dots) and columns indicate the reward value that was associated
with the visual cues in the cells during the classical conditioning procedure.
Associations were counter-balanced across subjects and gender. (C) Average
relationship between the combined value and the variability of multi-attribute objects.
Combined value (solid line) and variability (dashed line) are plotted as a function of
combined value.
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