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In drug-resistant temporal lobe epilepsy (TLE), detecting hippocampal atrophy on MRI is important as it al-
lows defining the surgical target. The performance of automatic segmentation in TLE has so far been consid-
ered unsatisfactory. In addition to atrophy, about 40% of patients present with developmental abnormalities
(referred to as malrotation) characterized by atypical morphologies of the hippocampus and collateral sulcus.
Our purpose was to evaluate the impact of malrotation and atrophy on the performance of three state-of-the-
art automated algorithms. We segmented the hippocampus in 66 patients and 35 sex- and age-matched
healthy subjects using a region-growing algorithm constrained by anatomical priors (SACHA), a freely avail-
able atlas-based software (FreeSurfer) and a multi-atlas approach (ANIMAL-multi). To quantify malrotation,
we generated 3D models from manual hippocampal labels and automatically extracted collateral sulci. The
accuracy of automated techniques was evaluated relative to manual labeling using the Dice similarity
index and surface-based shape mapping, for which we computed vertex-wise displacement vectors between
automated and manual segmentations. We then correlated segmentation accuracy with malrotation features
and atrophy. ANIMAL-multi demonstrated similar accuracy in patients and healthy controls (p>0.1), where-
as SACHA and FreeSurfer were less accurate in patients (pb0.05). Surface-based analysis of contour accuracy
revealed that SACHA over-estimated the lateral border of malrotated hippocampi (r=0.61; pb0.0001), but
performed well in the presence of atrophy (|r|b0.34; p>0.2). Conversely, FreeSurfer and ANIMAL-multi
were affected by both malrotation (FreeSurfer: r=0.57; p=0.02, ANIMAL-multi: r=0.50; p=0.05) and at-
rophy (FreeSurfer: r=0.78, pb0.0001, ANIMAL-multi: r=0.61; pb0.0001). Compared to manual volumetry,
automated procedures underestimated the magnitude of atrophy (Cohen's d: manual: 1.68; ANIMAL-multi:
1.11; SACHA: 1.10; FreeSurfer: 0.90, pb0.0001). In addition, they tended to lateralize the seizure focus less
accurately in the presence of malrotation (manual: 64%; ANIMAL-multi: 55%, p=0.4; SACHA: 50%, p=0.1;
FreeSurfer: 41%, p=0.05). Hippocampal developmental anomalies and atrophy had a negative impact on
the segmentation performance of three state-of-the-art automated methods. These shape variants should
be taken into account when designing segmentation algorithms.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Temporal lobe epilepsy (TLE) is the most frequent form of drug-
resistant epilepsy. The majority of patients display hippocampal scle-
rosis, a process characterized by various degrees of neuronal loss and
astrocytic gliosis (Babb and Brown, 1987). On MRI, hippocampal scle-
rosis generally appears as atrophy and signal changes (Jackson et al.,
1990). Detecting hippocampal sclerosis is clinically relevant, as it al-
lows the definition of the surgical target and is associated with favor-
able outcome in more than 70% of patients (Schramm and Clusmann,
2008).

Manual delineation of the hippocampus is the current gold stan-
dard, as it is accurate, reproducible and able to detect atrophy with
high sensitivity (Bernasconi et al., 2003; Jackson et al., 1993;
Kuzniecky et al., 1999). On the other hand, time requirement, rater-
bias, and increased demand to study large cohorts of healthy and dis-
eased populations have motivated the development of automated
segmentation procedures. Most methods employ deformable
(Kelemen et al., 1999; Yang and Duncan, 2004), appearance-
(Avants et al., 2010; Duchesne et al., 2002) or atlas-based approaches
(Collins et al., 1995; Fischl et al., 2002; Khan et al., 2008). Modeling
spatial relationships and texture has improved accuracy (Avants et
al., 2010; Chupin et al., 2009b). Alternatively, optimizing atlas-based
techniques with graph-cuts may impact favorably results in patients
with Alzheimer's disease and hippocampal atrophy (van der Lijn et
al., 2008; Wolz et al., 2010). Recently developed multi-template (or
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template library and label fusion) techniques account for structural
variability by selecting from a database a subset that best describe an-
atomical characteristics of the target structure (Aljabar et al., 2009;
Avants et al., 2010; Collins and Pruessner, 2010; Lötjönen et al.,
2010). Although algorithms, study groups, imaging type and perfor-
mance metrics vary across studies, results in healthy controls have
generally been satisfactory, with kappa agreement indices ranging
from 0.75 to 0.89 (Aljabar et al., 2009; Avants et al., 2010; Chupin
et al., 2009b; Collins and Pruessner, 2010; Coupé et al., 2011;
Heckemann et al., 2006; Khan et al., 2008; Lötjönen et al., 2011;
Morey et al., 2009; Pohl et al., 2007; van der Lijn et al., 2008).

In TLE, agreements between manual labeling and automated seg-
mentation have been low compared to healthy controls, with kappa
indices ranging from 0.63 to 0.77 (Akhondi-Asl et al., 2011; Avants
et al., 2010; Chupin et al., 2009b; Hammers et al., 2007; Heckemann
et al., 2010; Pardoe et al., 2009). The reduced accuracy likely stems
from factors other than atrophy, as previous approaches achieved a
performance similar to controls in patients with Alzheimer's disease
(Barnes et al., 2008; Chupin et al., 2009a; Leung et al., 2010). Indeed,
studies in early and declared forms of this condition have reported
hippocampal volume reductions ranging from 23 to 34% (Frisoni
et al., 1999; Jack et al., 1992; Lehericy et al., 1994; Xu et al., 2000). No-
tably, the degree of atrophy is generally larger in declared Alzheimer's
disease than in TLE, in which the effect size is in the order of 20%. In
addition to atrophy, about 40% of TLE patients show atypical shape
and positioning of the hippocampus (Bernasconi et al., 2005; Voets
et al., 2011). These features, commonly referred to as malrotation,
are considered markers of neurodevelopmental anomalies (Baulac
et al., 1998; Voets et al., 2011) and may contribute to the pathogene-
sis of this condition (Blumcke et al., 2002; Sloviter et al., 2004). They
are mainly characterized by a rounder appearance and atypical orien-
tation of the hippocampus, and an abnormally deep and verticalized
collateral sulcus (Baulac et al., 1998; Bernasconi et al., 2005). Thus,
malrotation features not only alter hippocampal morphology, but
also modify its spatial relationship with surrounding structures.

Our purpose was to evaluate the impact of malrotation, quantified
through 3D descriptive models (Kim et al., 2006; Voets et al., 2011),
on the performance of three fully automated hippocampal segmenta-
tion algorithms. We chose two algorithms previously used in TLE:
SACHA, a region growing approach that utilizes rule-based detection
of anatomical landmarks (Chupin et al., 2009b) and FreeSurfer
(Fischl et al., 2002), a freely available algorithm based on the non-
linear warp of a target image to a probabilistic atlas (Akhondi-Asl
et al., 2011; Pardoe et al., 2009). In addition, we evaluated a multi-
atlas approach based on ANIMAL registration technique (Collins and
Pruessner, 2010) that is among the most performant algorithms in
healthy controls, but has not been applied to TLE. Performance was
assessed relative to manual labeling using overlap indices and
surface-based shape mapping. The ability of automated methods to
lateralize the seizure focus was evaluated using linear discriminant
analysis.

Methods

Subjects

We studied 66 consecutive patients (36 males; 16–44 years, mean
age 36±10 years) referred to our hospital for the investigation of
drug-resistant TLE. The lateralization of the seizure focus was based
on a standard clinical evaluation including detailed history of seizure
semiology, recording of seizures by means of video-EEG monitoring
and radiological assessment of hippocampal sclerosis through visual
estimation of atrophy and increased T2 signal. Based on the conver-
gence of these exams, patients were classified into left TLE (LTLE;
n=35) and right TLE (RTLE; n=31). None of the patients had a
mass lesion (tumor or vascular malformation), developmental

malformation of the neocortex (cortical dysplasia, heterotopia or
polymicrogyria), or traumatic brain injury. Forty-eight patients
underwent surgery. Mean follow-up time was 3.1±3.4 years. We de-
termined surgical outcome according to Engel's modified classifica-
tion (Engel et al., 1993). Thirty-four (71%) patients had Class I
outcome, 5 (10%) Class II, 5 (10%) Class III and 4 (8%) Class IV. Follow-
ing qualitative histopathological analysis (Meencke and Veith, 1991),
hippocampal sclerosis was detected in 41/48 (85%) of patients in
whom a hippocampal specimen was available. In the remaining
seven, specimens were either incomplete or unsuitable for
histopathology.

The control group consisted of 35 age- and sex-matched healthy
individuals (19 males; 20–56 years, mean age 32±12 years). The
Ethics Committee of the Montreal Neurological Institute and Hospital
approved the study, and written informed consent was obtained from
all participants.

MRI acquisition

MR images were acquired on a 1.5 T Gyroscan (Philips Medical
Systems, Eindhoven, The Netherlands) using a 3D T1-fast field echo
sequence (TR=18 ms; TE=10 ms; NEX=1; flip angle=30°; matrix
size=256×256; FOV=256 mm; slice thickness=1 mm), providing
an isotropic voxel volume of 1 mm3. Prior to processing, images
underwent automated correction for intensity non-uniformity and
intensity standardization (Sled et al., 1998).

The hippocampus was segmented manually according to our pre-
viously published protocol (Bernasconi et al., 2003). Prior to segmen-
tation, MR images were registered into the MNI ICBM-152 nonlinear
template (Fonov et al., 2011) using 9 parameter linear transformation
(Collins et al., 1994).

Automatic hippocampal segmentation

1. SACHA. This algorithm simultaneously segments the hippocampus
and the amygdala based on a competitive region deformation con-
strained by automatically detected anatomical landmarks (Chupin
et al., 2007) and probabilistic priors (Chupin et al., 2009b). During
the deformation, voxels along the boundaries of the object are iter-
atively reclassified guided by anatomical priors. In our study, we
modified the initialization step. Instead of registering probabilistic
atlases of the hippocampus and amygdala (constructed from 16
healthy subjects) to a given target image in native space using
the original nonlinear discrete cosine basis registration
(Ashburner and Friston, 1999), we employed ANIMAL that com-
bines linear transformation and non-linear warping based on a
piece-wise linear coarse-to-fine deformation (Collins et al.,
1995). The choice of ANIMAL registration was empirical, as we
found an improvement in the segmentation performance of
SACHA in a set of 10 healthy controls (Dice index=82.2±3.3 vs.
80.5±3.2, t=3.2, p=0.005).

2. FreeSurfer. In this approach, the hippocampus is segmented using
a nonlinear template matching (Fischl et al., 2002). After linearly
registering the test image to the template, the algorithm estimates
the nonlinear transformation between a given MRI and a probabi-
listic atlas of the hippocampus constructed from a cohort of 14
young and middle-aged subjects using a maximum likelihood cri-
terion. Probabilistic labels are warped back to the individual MRI
using the inverse of this transform. The final segmentation is ac-
complished by maximizing the a posteriori probability in the
Bayes formula at each voxel. Voxel-wise probabilistic labels and
their predicted image intensities serve as the prior term, while
the intensity similarity between the target image and the template
serves as the likelihood term.

3. Multi-atlas approach based on ANIMAL registration (Collins and
Pruessner, 2010) (henceforth denoted ANIMAL-multi). In brief,
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