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Pattern recognition algorithms are becoming increasingly used in functional neuroimaging. These algorithms
exploit information contained in temporal, spatial, or spatio-temporal patterns of independent variables (fea-
tures) to detect subtle but reliable differences between brain responses to external stimuli or internal brain
states. When applied to the analysis of electroencephalography (EEG) or magnetoencephalography (MEG)
data, a choice needs to be made on how the input features to the algorithm are obtained from the signal am-
plitudes measured at the various channels. In this article, we consider six types of pattern analyses deriving
from the combination of three types of feature selection in the temporal domain (predefined windows, shifting
window,whole trial)with two approaches to handle the channel dimension (channel wise,multi-channel). We
combined these different types of analyses with a Gaussian Naïve Bayes classifier and analyzed a multi-
subject EEG data set from a study aimed at understanding the task dependence of the cortical mechanisms
for encoding speaker's identity and speech content (vowels) from short speech utterances (Bonte, Valente,
& Formisano, 2009). Outcomes of the analyses showed that different grouping of available features helps
highlighting complementary (i.e. temporal, topographic) aspects of information content in the data. A shifting
window/multi-channel approach proved especially valuable in tracing both the early build up of neural infor-
mation reflecting speaker or vowel identity and the late and task-dependent maintenance of relevant infor-
mation reflecting the performance of a working memory task. Because it exploits the high temporal
resolution of EEG (and MEG), such a shifting window approach with sequential multi-channel classifications
seems the most appropriate choice for tracing the temporal profile of neural information processing.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Electroencephalography (EEG) and magnetoencephalography
(MEG) are commonly used to study the time course of neural infor-
mation processing in the human brain with high temporal resolution.
In most cases, EEG/MEG studies rely on the comparison of averaged
responses to repeated presentations of experimental conditions ei-
ther in the temporal domain (event-related potentials [ERPs] or fields
[ERFs], respectively) and/or in the frequency domain (event-related
desynchronization and synchronization) (Pfurtscheller and Lopes Da
Silva, 1999). Often, the statistical analyses (and related inferences
on neural processing) are limited to a-priori specified (spectro-) tem-
poral windows of interest – at channel or estimated source level – and

therefore only a small subset of the measured signal is actually
utilized.

This article illustrates several approaches to EEG data analysis based
on pattern recognition (e.g. Bishop, 2007; Duda et al., 2001). In contrast
to the conventional approachwhere a single dependent variable is exam-
ined (univariate statistics), these techniques exploit the information con-
tent in patterns of dependent variables (features), which are extracted
from the measured signals. Pattern recognition allows analyzing EEG
data in a more exploratory and data-driven manner and – similar to the
recent developments in fMRI (e.g. Haynes and Rees, 2006) – promises
to complement conventional approaches for EEG/MEG analysis.

A typical application of pattern recognition methods includes
three steps, (1) extracting and selecting features (i.e. dependent vari-
ables), (2) learning a model with a machine-learning algorithm, and
(3) determining the generalization ability of the learnt model using
an independent evaluation dataset. In EEG/MEG, various types of fea-
tures can be considered, ranging from signal amplitude in the tempo-
ral domain (e.g. Rieger et al., 2008) to power or phase information in
the frequency domain (Kerlin et al., 2010; Luo and Poeppel, 2007;
Rieger et al., 2008). Specific transformations, such as wavelet coeffi-
cients (Åberg andWessberg, 2007; Rieger et al., 2008), and coherence
measures (Besserve et al., 2007) can also be used. Furthermore,
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features can be differently grouped in the (spectral-) temporal and
spatial domain. For example, limiting the information to pre-defined
temporal windows of interest is essential to many realizations of
EEG-based brain-computer interface (BCI) systems (e.g. Birbaumer,
2006; Blankertz et al., 2011; Wolpaw et al., 2002). Alternatively, the
information contained in a sliding time interval of EEG data can be
used, e.g. to detect the occurrence of seizures in epileptic subjects
(Schad et al., 2008). Concerning the spatial (channel) domain, many
BCI systems employed spatial filters (i.e. linear combinations of chan-
nels; see Blankertz et al., 2011) to enhance performances. For the
same reason sophisticated feature selection or reduction methods
were applied in BCI systems (see Bashashati et al., 2007).

Severalmachine-learning algorithmshave beenused to learn the rela-
tion between selected features of the EEG/MEG data and experimental la-
bels. These algorithms include simple correlation (e.g. Luo and Poeppel,
2007), support vector machines (SVMs) (Vapnik, 1995), linear discrimi-
nant analysis (LDA) (e.g. Dudaet al., 2001), andneural networks or Bayes-
ian approaches (Bishop, 2007). Most frequently, learning algorithms are
based upon linear models (e.g. Lotte et al., 2007; Rieger et al., 2008; van
Gerven et al., 2009) due to their fast computation, robustness and simplic-
ity of results interpretation.

To determine the generalization ability of the computed model, an
independent set of test data is required. This can be done at single-
subject level, splitting the measured data into training and testing
sets (e.g. Luo and Poeppel, 2007) or across subjects, using a subset
of subjects for training and the other for evaluating the generalization
performance (e.g. Kerlin et al., 2010).

In this study, we consider and evaluate the effects of differently
combining and grouping the features in the temporal (predefined win-
dows, shifting window, whole trial) and channel domain (single chan-
nel, multichannel) in the context of a neuro-cognitive EEG paradigm.
Using Gaussian Naïve Bayes (GNB; Mitchell, 1997) classification, we
analyze data from an auditory EEG study aimed at understanding
the task dependence of the cortical mechanisms underlying the pro-
cessing of voice and speech identification (Bonte et al., 2009) and il-
lustrate the results of each possible feature combination in the
temporal and channel domain.

Materials and methods

Machine-learning approaches for the analysis of neuroimaging data
require single trials to be described by an n-dimensional vector of fea-
tures. In our approach, basic features are defined as EEG voltages and in-
clude time (samples) and measurement channels (electrodes). In
particular, we consider six types of classification analyses derived from
combining three types of features grouping in the temporal domain
(predefined windows, shifting windows,whole trial)with two approaches
to handle the channel dimensions (single channel, multichannel, see
Fig. 1). These different types of analyses can be combined with any clas-
sification algorithm (e.g. LDA classifier or SVMs). Here, we use a modi-
fied Gaussian Naïve Bayes classification, because of its simplicity which
implies lower computational costs (e.g. compared to SVM classification)
and interpretability of model parameters. We examine the case of pair-
wise classifications of EEG responses to simple vowels (/a/, /i/, /u/) spo-
ken by three speakers (sp1, sp2, sp3) (see EEG experiment and data
section).

Predefined windows

In the first approach, we use prior hypotheses (e.g. typical ERP win-
dows) to select the temporal windows entering the analysis. As depicted
in Fig. 1.a, the temporal samples within a specific interval are used as fea-
tures to classify single trials either for each of the K channels (right upper
panel) or for all channels (right lower panel). In the latter case, the feature
set is defined by concatenating sampling points of multiple channels. In
the case of a channel-by-channel analysis accuracy values are obtained

for each electrode. This allows creating a topographicmapof classification
performance for the predefined intervals. Classifying based on features
from multiple channels results in one classification accuracy value. In
this case, a topographicmap is created from theweights estimated during
model training (see Eq. (4)) that indicate the relevance of each electrode
contribution to the classification.

Shifting windows

In the second approach (Fig. 1b), the analyses are not restricted to
specific latencies and are based upon features from shifting windows
either on a channel-by-channel basis (right upper panel) or by
concatenating features from multiple channels (right lower panel).
Results of the single-channel approach can be depicted as a time se-
ries of topographic plots indicating classification performance.

The multi-channel classification allows retrieving the information
content over time (information time-course). A weight vector – indicat-
ing the relevance of individual channels – is obtained for each time
window.

Whole trial period

In the third temporal approach (Fig. 1.c) all temporal samples
within a trial period are used. Classifications are performed either
using the channel-wise (right upper panel) or multi-channel (right
lower panel) approach. Results for the channel-wise approach may
be used to create a topographic map of the information content with-
in the entire trial period. For the multichannel approach, the analysis
returns an overall accuracy value. Weights are defined for each sam-
pling point and channel and thus indicate the temporal and topo-
graphical variation of the information content.

Gaussian Naïve Bayes classification

We report below a short description of GNB classification with ref-
erence to EEG data; see Mitchell (1997), for a more complete and
general formulation of this algorithm.

Let us consider a supervised learning problem in which we wish to
approximate the function f :X→C or equivalently P(C|X), where C is a
Boolean random variable representing the categories in our classifica-
tion problem and X= 〈x1,…,xn〉 is a n-dimensional feature vector
obtained from the EEG data. Using Bayes rule we can write:

P C ¼ cmð jXÞ ¼ P Xð jC ¼ cmÞP C ¼ cmð Þ
∑
j
P Xð jC ¼ cjÞP C ¼ cj

� � ð1Þ

where cm represents the mth category. One way to learn P(C|X) is to
use the training data to estimate P(X|C) and P(C) and then use
Eq. (1) to classify any new instance of X.

The Naïve term is introduced when in the estimation of P(X|C) the
n features are assumed to be conditionally independent and Eq. (1)
can be written as:

P C ¼ cmð jXÞ ¼
∏
n

i¼1
P xið jC ¼ cmÞP C ¼ cmð Þ

∑
j
∏
n

i¼1
P xið jC ¼ cjÞP C ¼ cj

� � : ð2Þ

Following Eq. (2) and having estimated P(xi|C) and P(C) from the
training data, any new EEG trial Ynew= 〈y1,…,yn〉 can be classified fol-
lowing:

C←argmax P C ¼ cmð Þ∏
n

i¼1
P yið jC ¼ cmÞ

Cm

; ð3Þ
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