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The brain consists of functional units with more-or-less specific information processing capabilities, yet cog-
nitive functions require the co-ordinated activity of these spatially separated units. Magnetoencephalography
(MEG) has the temporal resolution to capture these frequency-dependent interactions, although, due to vol-
ume conduction and field spread, spurious estimates may be obtained when functional connectivity is esti-
mated on the basis of the extra-cranial recordings directly. Connectivity estimates on the basis of
reconstructed sources may similarly be affected by biases introduced by the source reconstruction approach.
Here we propose an analysis framework to reliably determine functional connectivity that is based around
two main ideas: (i) functional connectivity is computed for a set of atlas-based ROIs in anatomical space
that covers almost the entire brain, aiding the interpretation of MEG functional connectivity/network studies,
as well as the comparison with other modalities; (ii) volume conduction and similar bias effects are removed
by using a functional connectivity estimator that is insensitive to these effects, namely the Phase Lag Index
(PLI).
Our analysis approach was applied to eyes-closed resting-state MEG data for thirteen healthy participants.
We first demonstrate that functional connectivity estimates based on phase coherence, even at the source-
level, are biased due to the effects of volume conduction and field spread. In contrast, functional connectivity
estimates based on PLI are not affected by these biases. We then looked at mean PLI, or weighted degree, over
areas and subjects and found significant mean connectivity in three (alpha, beta, gamma) of the five (includ-
ing theta and delta) classical frequency bands tested. These frequency-band dependent patterns of resting-
state functional connectivity were distinctive; with the alpha and beta band connectivity confined to poste-
rior and sensorimotor areas respectively, and with a generally more dispersed pattern for the gamma band.
Generally, these patterns corresponded closely to patterns of relative source power, suggesting that the most
active brain regions are also the ones that are most-densely connected.
Our results reveal for the first time, using an analysis framework that enables the reliable characterisation of
resting-state dynamics in the human brain, how resting-state networks of functionally connected regions
vary in a frequency-dependent manner across the cortex.

© 2011 Elsevier Inc. All rights reserved.

Introduction

The brain consists of billions of interconnected neurons, forming an
extremely complex system (Tononi and Edelman, 1998; Tononi et al.,
1998) in which clusters of neurons are organised as functional units
with more-or-less specific information processing capabilities (e.g.
Born and Bradley, 2005; Grodzinsky, 2000). Yet, cognitive functions re-
quire the coordinated activity of these spatially separated units, where

the oscillatory nature of neuronal activity, and phase relations between
units, may provide a possible mechanism (Fries, 2005; Varela et al.,
2001). Not only has it been shown that rhythmic activity plays an im-
portant role in perception and sensori-motor systems (Arieli et al.,
1996; Forss and Silen, 2001; Hari and Salmelin, 1997; Houweling et
al., 2010; Kenet et al., 2003; Linkenkaer-Hansen et al., 2004; Mima et
al., 2000), as well as in higher cognitive functions (Engel et al., 2001;
Ward, 2003), but it has also been shown that patterns of resting-state
oscillatory activity in patients with neurological disorders differ from
those in healthy subjects, and that these differences correlate with cog-
nitive performance (Uhlhaas and Singer, 2006).

Magnetoencephalography (MEG), with its high temporal resolu-
tion, can be used to characterise the (resting-state) networks formed
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by interacting sources of oscillatory activity (Bassett et al., 2006;
Hyvarinen et al., 2010; Langheim et al., 2006; Liu et al., 2010). However,
in manyMEG studies the required estimation of functional connectiv-
ity is performed at the sensor-level, which impedes comparison with
the rapidly growing literature on resting-state functional connectivity
using functional Magnetic Resonance Imaging (fMRI; van den Heuvel
and Hulshoff Pol, 2010). Another problem is that multiple recording
sites pick up signals from a single source due to both the nature of
the inducedmagnetic flux (see e.g. Domínguez et al., 2007) and volume
conduction, which can lead to erroneous estimates of functional con-
nectivity when these estimates are based on sensor-level measure-
ments. Moreover, the signals originating from spatially separated
brain areas are mixed at the sensor level, which can result in over/un-
derestimation of synchronisation, where the exact effect is dependent
on a complex interplay of modulations in source- and noise-power,
source interactions, as well as relative position and orientation of the
sources (e.g. Grasman et al., 2004; Meinecke et al., 2005; Schoffelen
and Gross, 2009).

These limitations have provoked research into four different direc-
tions: i) using estimates of the expected functional connectivity that is
due to volume conduction/field spread without true interactions, and
subtracting such estimates from the measured functional connectivity
(Nunez et al., 1997), or using such estimates to derive a statistical
threshold for the measured interactions (e.g. Brookes et al., 2011a);
ii) the development of functional connectivity estimators that are in-
sensitive to these confounds of field spread and volume conduction
(Nolte et al., 2004; Stam et al., 2007); iii) development of techniques
such as DCM (Dynamic Causal Modelling; Friston et al., 2011; Moran
et al., 2009) that, given a set of hypotheses, test between different
bio-physically motivated source- or network-models based on their
model evidence; and iv) investigations into the utility of functional
connectivity analysis at the source level. The simplest approach here
is to create a source model to project the (unaveraged) sensor data
into source space (Hoechstetter et al., 2004), although the creation
of such a source montage requires the availability of averaged evoked
data (see Grasman et al., 2004 though). The construction of a source
montage can also be achieved by using a combination of Independent
Component Analysis (ICA) and a multivariate autoregressive (MVAR)
model (Gomez-Herrero et al., 2008; Haufe et al., 2010), or using Prin-
ciple Component Analysis (PCA), ICA or MVAR in combination with an
inverse estimator (Cheung et al., 2010; Mantini et al., 2011; Marzetti
et al., 2008; Nolte et al., 2009). Alternatively, functional networks
can be directly estimated at the source level (Dossevi et al., 2008), al-
though this efficient approach is only applicable when the source ma-
trix is obtained though a distributed linear inversion, and when the
source coupling can be described as a scalar product between the
source signals.

Various modifications of linear estimators have been used to re-
construct the time-series for a large number of locations (de
Pasquale et al., 2010; Ghuman et al., 2011; Harle et al., 2004; Jerbi et
al., 2007; Lin et al., 2004), for a set of cortical patches (e.g. David et
al., 2002, 2003; Gruber et al., 2006; Palva et al., 2010a, 2010b; Supp
et al., 2007), or for a limited set of a-priori defined Regions-of-
Interest (ROIs; e.g. Astolfi et al., 2007; Babiloni et al., 2005; De Vico
Fallani et al., 2007), where the time-series were subsequently used
for the estimation of functional connectivity.

A drawback of the above approaches is that the spatially smooth
estimates of neuronal activity that are obtained contain widespread
correlations between reconstructed source elements, so that esti-
mates of functional connectivity between such sources are likely to
be, as with sensor-level analysis, erroneous (David et al., 2002; Hui
et al., 2010) and/or difficult to interpret.

Here we propose to use a source reconstruction approach that re-
sults in sharper 3-dimensional images of neuronal activity, known as
beamforming, which has recently been used to map functional con-
nectivity across the entire brain (Brookes et al., 2011a; Guggisberg

et al., 2008; Hinkley et al., 2010; Hipp et al., 2011; Kujala et al.,
2006, 2008; Martino et al., 2011; Wibral et al., 2011), or to character-
ise interactions between a few ROIs (Siegel et al., 2008); see also Ding
et al. (2007) and Ioannides et al. (2002) for related approaches. We
use beamforming to estimate time-series for a set of atlas-based
ROIs that cover the brain, where the use of a standard brain-atlas
aids the interpretation of our results, gives a robust platform for
group-level statistics, and enables a straightforward comparison
with results obtained using other modalities. Functional connectivity
between these ROIs is then estimated, and we first demonstrate that
the effects of volume conduction and biases introduced by the beamfor-
mer can be removed by using the Phase Lag Index (PLI) for the estima-
tion of functional connectivity. Applying this approach to resting-state
MEG data in healthy controls reveals clearly distinct frequency-band
dependent patterns of resting-state functional connectivity. Generally,
these patterns corresponded closely to patterns of relative source
power, suggesting that the most active brain regions are also the ones
that are most-densely connected.

Methods

Participants and recording protocol

We used previously analysed MEG data from 13 healthy subjects,
where they formed part of studies on Parkinson's disease for which
approval was obtained from the medical ethics committee of the VU
University Medical Center. In these studies oscillatory power, as
well as functional connectivity and network characteristics at the
sensor level, were estimated and compared between healthy controls
and demented and non-demented patients with Parkinson's disease
(Bosboom et al., 2006, 2009).

All subjects gave written informed consent prior to participating.
MEG data were acquired in the morning, using a 151-channel whole
head MEG system (CTF Systems Inc., Port Coquitlam, Canada), situat-
ed in a magnetically shielded room (Vacuum-schmelze GmbH, Hanau,
Germany). The data were sampled at 312.5 Hz, with a recording pass-
band of 0–125 Hz, and a third-order software gradient was applied
(Vrba and Robinson, 2002). Each session started with an approxi-
mately 5 minutes eyes-closed (EC) resting-state recording, followed
by an approximately 5 minutes eyes-open (EO) recording. We only
analysed the data recorded during the eyes-closed resting-state. Due
to technical problems, 1–3 channels were discarded from the analysis
(3, 3, and 7 datasets contained 148, 149, and 150 channels, respective-
ly). For the construction of the beamformer weights, the eyes-closed
data were band-pass filtered from 0.5 to 48 Hz, and after visual in-
spection, trials containing artefacts were removed. A time-window
of, on average, 264.2 seconds (range: 175–360 s.) was used for the
computation of the data covariance matrix. Broadband data were
used for the estimation of the beamformer weights as this avoids
overestimation of covariance between channels (Barnes and
Hillebrand, 2003).

For each subject, an anatomical MRI of the head was obtained at
1 T (Impact, Siemens, Erlangen, Germany), with an in-plane resolu-
tion of 1 mm and slice thickness of 1.5 mm. Vitamin E capsules
were placed at anatomical landmarks, the pre-auricular points and
the nasion, to guide co-registration with the MEG data. In the MEG
setting, three head position indicator coils were placed at the same fi-
ducial locations, and these coils were activated at the start of each
MEG acquisition. Head position and orientation were computed on
the basis of the magnetic fields produced by these coils. Using these
two corresponding sets of fiducial markers, the MEG and MRI coordi-
nate systems were matched. The co-registered MRI was subsequently
segmented, and the outline of the scalp was used to compute a multi-
sphere head model (Huang et al., 1999) for the calculation of the
lead-fields.
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