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Real-time fMRI allows analysis and visualization of the brain activity online, i.e. within one repetition time. It
can be used in neurofeedback applications where subjects attempt to control an activation level in a specified
region of interest (ROI) of their brain. The signal derived from the ROI is contaminated with noise and
artifacts, namely with physiological noise from breathing and heart beat, scanner drift, motion-related
artifacts and measurement noise. We developed a Bayesian approach to reduce noise and to remove artifacts
in real-time using a modified Kalman filter. The system performs several signal processing operations:
subtraction of constant and low-frequency signal components, spike removal and signal smoothing.
Quantitative feedback signal quality analysis was used to estimate the quality of the neurofeedback time
series and performance of the applied signal processing on different ROIs. The signal-to-noise ratio (SNR)
across the entire time series and the group event-related SNR (eSNR) were significantly higher for the
processed time series in comparison to the raw data. Applied signal processing improved the t-statistic
increasing the significance of blood oxygen level-dependent (BOLD) signal changes. Accordingly, the
contrast-to-noise ratio (CNR) of the feedback time series was improved as well. In addition, the data revealed
increase of localized self-control across feedback sessions.
The new signal processing approach provided reliable neurofeedback, performed precise artifacts removal,
reduced noise, and required minimal manual adjustments of parameters. Advanced and fast online signal
processing algorithms considerably increased the quality as well as the information content of the control
signal which in turn resulted in higher contingency in the neurofeedback loop.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Scientific interest in real-time fMRI-based neurofeedback has
grown over the last decade (Birbaumer et al., 2009; Bray et al., 2007;
Johnston et al., 2010; LaConte, 2010; Lee et al., 2009; Rota et al., 2009;
Weiskopf et al., 2003; Yoo et al., 2008). Clinical applications were
suggested to therapeutically apply circumscribed neural effects of
fMRI neurofeedback training, and it was piloted with patients
suffering from neurofunctional symptoms such as pain (deCharms
et al., 2005) and tinnitus (Haller et al., 2010). To achieve efficient
learning of self-control, the neurofeedback system must provide a
contingent feedback, i.e. subjects performing the neurofeedback
training must be able to recognize the relation between the localized

neural activity and the feedback signal (Bagarinao et al., 2006; Cox
et al., 1995; Weiskopf et al., 2003). It remains a challenge to achieve a
sufficient quality of the feedback data which suffer from poor signal-
to-noise ratio (Diedrichsen and Shadmehr, 2005; Hinds et al., 2010).
So far there are little data on quality measures of fMRI neurofeedback
systems and signal processing strategies have not been systemati-
cally evaluated. Particularly, artifacts and sudden signal changes
need to be considered since they may lead to learning of nuisance
signals.

The Blood Oxygen Level-Dependent (BOLD) response typically has
a maximum of about 5% of the image intensity, but in neurofeedback
studies even average signal changes below 1% across a region of
interest (ROI) need to be considered (Boynton et al., 1996; Caria et al.,
2007; Friston and Ashburner, 1994). In addition to unsystematic
noise, different types of artifacts considerably reduce the feedback
signal quality (Weiskopf et al., 2004). Any signal change which can be
consciously or non-consciously controlled by the subject may be
learned and therefore signal changes that arise from non-neural origin
need to be limited.
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fMRI encompasses additive Gaussian noise and non-linear com-
ponents. The Gaussian component can be well characterized by its
statistics and is optimally addressed by averaging and linear filters in
the temporal and spatial dimensions (Worsley and Friston, 1995). In
contrast the non-linear artifacts tend to show a heavy-tail distribu-
tion, i.e. high proportion of the events emerges outside the double
standard deviation range (Diedrichsen and Shadmehr, 2005). In
general, the most common sources of fMRI artifacts are inhomoge-
neities of the static magnetic field, head movement, respiration and
heart beat (Diedrichsen and Shadmehr, 2005; Friston et al., 1996;
Hornak, 2010; Uludag et al., 2005; Weiskopf et al., 2004). The signal
fluctuations may be due to the spin-history effects (Friston et al.,
1996), scanner artifacts from electrostatic discharges (Brown and
Semelka, 2010) as well as motion-by-susceptibility interaction during
head movement (Wu et al., 1997), irregular respiratory activity
(Gelderen et al., 2007), eye movement, heart beat, and swallowing
(Beauchamp, 2003; Birn et al., 1998). Some of these non-linear
artifacts are often observed as spikes, i.e. abrupt changes of signal
intensity across a short time period.

Movement artifacts can be reduced with an inbuilt MR scanner
motion correction package (Thesen et al., 2000) and with real-time
motion correction algorithms (e.g. Mathiak and Posse, 2001). To
further suppress motion artifacts, motion covariates may be included
in the general linear model (GLM; Worsley and Friston, 1995; Goebel,
2001;Weiskopf et al., 2003). However, the motion artifacts can not be
completely removed (deCharms et al., 2004; Grootoonk et al., 2000).
Moreover, the motion correction can add noise and artifacts to the
feedback signal even if the image alignment is improved (Mathiak and
Posse, 2001). Particularly, abrupt movement within one volume
acquisition may appear as a spike in the data. Respiration leads to
shifts in the resonance frequency (Glover et. al., 2000) and thus can
modulate the feedback signal. Online distortion correction based on
the dynamic off-resonance effects (Weiskopf et al., 2005) may reduce
such respiration artifacts. The acquired feedback time series can
alternatively be processed offline with the standard signal filtering
algorithms in order to achieve improved t-statistics (Weiskopf et al.,
2004). However, the noise reduction approaches based on temporal
or spatial characteristics usually fail to remove the non-linear spike-
like noise and thus result in blurring of the spike patterns rather than a
removal. Then when a standard low-pass filter is applied the local
spike is blurred across a longer time interval. Therefore, spike correc-
tion needs to be performed before temporal averaging and typically
requires dedicated algorithms (e.g. Chavez et al., 2009; Cui et al.,
2009; Zhang et al., 2001).

Online signal processing algorithms may rely on signal values
acquired across the entire time series or from a sliding window, e.g.
standard temporal band-pass filters or a low-pass Butterworth filter
(Butterworth, 1930). The moving average algorithm (Roberts, 1959)
is well suited to online application but fails in the removal of nonlinear
and spike-like noise (Cui et al., 2009).

The challenge of online non-linear spike-noise identification is that
given the current time point and the previous signal an algorithm
should first check whether the current point is a spike and correct it if
necessary. An additional requirement to such approaches could be the
integration of a low-passfilter to suppress the high-frequency noise. In
that case, a Bayesian approach appears promising (Grewal and
Andrews, 2008; Vaseghi, 2006). The current point can be calculated
using the Bayesian methods from the current measurement and the
previous state through a filtering operation, e.g. by application of a
Kalman filter (Kalman, 1960). Typically, the feedback is presented to
the participant with a delay that depends on the time involved for
image acquisition and processing which can be reduced to about 1 s
(Sitaram et al., 2007; Weiskopf et al., 2007).

Quality assessment of fMRI data is particularly important for
clinical and multicenter studies (Simmons et al., 1999; Stöcker et al.,
2005). Real-time fMRI quality assurance was proposed for monitoring

the experimental process (Cox et al., 1995; Voyvodic, 1999; Weiskopf
et al., 2007). Neurofeedback signal quality can be measured with the
standard quality measures like signal-to-noise ratio (SNR), event-
related signal-to-noise ratio (eSNR) and contrast-to-noise ratio (CNR;
see Geissler et al., 2007; Cui et al., 2009).

The expected frequency range of the BOLD signal reported is
approximately 0.01–0.12 Hz (Kannurpatti et al., 2008; Robinson
et al., 2006; Uludag et al., 2005), and the neurofeedback contingency
can constrain the feedback signal to this physiological range to
reduce the chances of attributing noise as neural signals. Application
of the non-linear filtering method achieved by modification of the
Kalman filter increases the functionality and flexibility of the signal
processing approach. Furthermore, in contrast to the classical low-
pass filter, the Kalman filter can be modified to remove spikes
directly.

We investigate 1) quality assessment parameters of the real-time
fMRI feedback signal in four different neuropsychological paradigms
and 2) the effect of the non-linear Kalman filter on these parameters.
The novel online filter was applied in real-time neurofeedback
experiments to remove the low-frequency feedback signal drift with
an exponential moving average (EMA) algorithm (Cui et al., 2009;
Roberts, 1959) and the high-frequency noise and large signal outliers
with a modified Kalman filter. Finally, the processed feedback signal
was normalized to the relative displayed range. Raw signals were
stored and processed offline for the comparison of raw and filtered
signal properties. We tested the effectiveness of removal of non-linear
and spike-like noise with respect to the quality measure SNR, eSNR,
and CNR as well as the experimental statistics.

Methods

Real-time signal processing

The proposed online signal processing encompasses four consec-
utive operations: (1) signal drift removal, (2) spikes detection and
correction, (3) high frequency noise removal, and (4) signal
normalization. Operations 2 and 3 are composite and performed
within one estimator, i.e. the modified Kalman filter.

EMA as high-pass filter
Online BOLD signal drift removal was achieved with the exponen-

tial moving average (EMA) algorithm and computed first. The EMA
method proved to be an effective tool for real-time neuroimaging
applications (e.g. in fNIRS, see Cui et al., 2009). This recursive filter
applies weighting factors which decrease exponentially and can
compute the low and high frequency components of the input signal
independently (formulas see Appendix A). Performance of the EMA
filter depends on the value of the smoothing factor α which can be
chosen between 0 and 1. Setting α=0.98 yields a high-pass filter with
time-constant τ=49 s and a sampling interval TR=1 s. The cut-off
frequency of such a filter is fC=(2·π·τ)−1=0.003Hz and thus well-
below the required BOLD frequency range.

The linear Kalman filter
Spike detection and high-frequency noise rejection were achieved

using a non-linear modification of the Kalman filtering algorithm and
performed as a second online computation step. In its linear form, a
Kalman filter (formulas see Appendix A) is an adaptive estimation
algorithm which is based on the principle that the desired signal can
be extracted from the observation input through a filtering operation
(Grewal and Andrews, 2008; Kalman, 1960; Vaseghi, 2006).

Modification and initialization of the Kalman filter
We extended the linear Kalman filter to remove outliers from the

BOLD signal by implementing a non-linear modification. The update
term Km(ym−H·xm−) (see Eq. (1.8), Appendix A) reflects the
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