
Generalised filtering and stochastic DCM for fMRI

Baojuan Li a,c, Jean Daunizeau a,b, Klaas E. Stephan a,b, Will Penny a, Dewen Hu c, Karl Friston a,⁎
a The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK
b Laboratory for Social and Neural Systems Research, Institute of Empirical Research in Economics, University of Zurich, Zurich, Switzerland
c College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073, PR China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 17 September 2010
Revised 10 December 2010
Accepted 31 January 2011
Available online 17 February 2011

Keywords:
Bayesian
Filtering
Dynamic causal modelling
fMRI
Free energy
Dynamic expectation maximisation
Random differential equations
Neuronal

This paper is about the fitting or inversion of dynamic causal models (DCMs) of fMRI time series. It tries to
establish the validity of stochastic DCMs that accommodate random fluctuations in hidden neuronal and
physiological states. We compare and contrast deterministic and stochastic DCMs, which do and do not ignore
random fluctuations or noise on hidden states. We then compare stochastic DCMs, which do and do not ignore
conditional dependence between hidden states and model parameters (generalised filtering and dynamic
expectation maximisation, respectively). We first characterise state-noise by comparing the log evidence of
models with different a priori assumptions about its amplitude, form and smoothness. Face validity of the
inversion scheme is then established using data simulated with and without state-noise to ensure that DCM
can identify the parameters and model that generated the data. Finally, we address construct validity using
real data from an fMRI study of internet addiction. Our analyses suggest the following. (i) The inversion of
stochastic causal models is feasible, given typical fMRI data. (ii) State-noise has nontrivial amplitude and
smoothness. (iii) Stochastic DCM has face validity, in the sense that Bayesian model comparison can
distinguish between data that have been generated with high and low levels of physiological noise and model
inversion provides veridical estimates of effective connectivity. (iv) Relaxing conditional independence
assumptions can have greater construct validity, in terms of revealing group differences not disclosed by
variational schemes. Finally, we note that the ability to model endogenous or random fluctuations on hidden
neuronal (and physiological) states provides a new and possibly more plausible perspective on how
regionally specific signals in fMRI are generated.

© 2011 Published by Elsevier Inc.

Introduction

This paper is about stochastic dynamic causal modelling of fMRI
time series. Stochastic DCMs differ from conventional deterministic
DCMs by allowing for endogenous or random fluctuations in
unobserved (hidden) neuronal and physiological states, known
technically as system or state-noise (Riera et al., 2004; Penny et al.,
2005; Daunizeau et al., 2009). In this paper, we look more closely at
the different ways in which stochastic DCMs can be treated.
Deterministic DCMs provide probabilistic forward or generative
models that explain observed data in terms of a deterministic
response of the brain to known exogenous or experimental input.
This response is a generalised convolution of the exogenous input
(e.g. the stimulus functions used for defining design matrices in
conventional fMRI analyses). In contrast, stochastic DCMs allow for
fluctuations in the hidden states, such as neuronal activity or
hemodynamic states like local perfusion and deoxyhemoglobin
content. These fluctuations can be regarded as a result of (endoge-

nous) autonomous dynamics that are not explained by (exogenous)
experimental inputs. This state-noise can propagate around the
system and, potentially, can have a profound effect on the correlations
among observed fMRI signals from different parts of the brain. In this
work, we ask whether it is possible to model endogenous or random
fluctuations and still recover veridical estimates of the effective
connectivity that mediates distributed responses. In particular, we
compare and contrast DCMs with and without stochastic or random
fluctuations in hidden states and explore variants of stochastic DCMs
that make different assumptions about the conditional dependence
between unknown (hidden) states and parameters.

Dynamic causal modelling (DCM) refers to the inversion of state-
space models formulated with differential equations. Crucially, this
inversion or fitting allows for uncertainty about both the states and
parameters of the model. To date, DCMs for neuroimaging time series
have been limited largely to deterministic DCMs, where uncertainty
about the states is ignored (e.g., Friston et al., 2003). These are based
on ordinary differential equations and assume that there are no
random variations in the hidden neuronal and physiological states
that mediate the effects of known experimental inputs on observed
fMRI responses. In other words, the only uncertainty arises at the
point of observation, through measurement noise. However, many
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studies suggest that physiological noise due to stochastic fluctuations
in neuronal and vascular responses need to be taken into account
(Biswal et al., 1995; Krüger and Glover, 2001; Riera et al., 2004).
Recently, there has been a corresponding interest in estimating both
the parameters and hidden states of DCMs based upon differential
equations that include state-noise. Examples of these have been in the
DCM literature for a while (e.g., Friston, 2008; Daunizeau et al., 2009).
Early pioneering work in this area focussed on multivariate
autoregression and state-space models formulated as difference
equations (Riera et al., 2004; Valdes-Sosa, 2004; Penny et al., 2005;
Valdés-Sosa et al., 2005). Riera et al. (2004) used stochastic
differential equations to model hemodynamic responses in fMRI
data, and estimated the underlying states and parameters from BOLD
responses using a local linearisation innovation method. Penny et al.
(2005) used difference equations to furnish a bilinear state-space
model for fMRI time series and estimated its parameters and states
using expectation maximisation (EM). This work was extended by
Makni et al. (2008), who used a Variational Bayes inversion scheme
that allowed for priors over model parameters and enabled model
comparison (Penny et al., 2004). More recently, Daunizeau et al.
(2009) introduced a general variational Bayesian approach for
approximate inference on nonlinear models based on stochastic
differential equations. In their recent work, Sotero et al. (2009) used
the innovation method to invert a biophysical generative model of
fMRI, which included both physiological and observation noise.

This paper deals with models based on random differential
equations rather than stochastic differential or difference equations.
This affords a model of state-noise that is not restricted to Wiener
processes or Markovian assumptions. Furthermore, we will consider
DCMs that comprise a network of regions (see also Valdés-Sosa et al.,
2005), instead of the single regions considered previously (Penny
et al., 2005; Makni et al., 2008). Our work in this area has focused on
schemes that simplify the inversion problem, using various assump-
tions about the posterior or conditional density on unknown
quantities in the model. Usually this density is assumed to have a
Gaussian form. This is known as the Laplace approximation. In
addition to this assumption, schemes based upon variational Bayes
assume that the states and parameters (and any hyperparameters
governing the amplitude of random noise) are conditionally inde-
pendent. This is known as the mean-field approximation. Each set of
conditionally independent quantities induces a separate optimisation
step in the variational inversion scheme. For deterministic DCMs there
are only two unknown quantities, the parameters and the hyperpara-
meters. These are optimised by maximising a variational (free-
energy) bound on the model log evidence in two steps. These are
usually described as expectation and maximisation steps in varia-
tional EM schemes (Friston et al., 2003). Stochastic DCMs include a
new set of unknown variables, namely, the hidden states. This
introduces a third (dynamic) step, leading to schemes like dynamic
expectation maximisation (DEM; Friston et al., 2008). Recently, we
have developed a simpler andmore general scheme called generalised
filtering (GF; Friston et al., 2010) that dispenses with the (mean-field)
conditional independence assumption. In this paper, we examine the
utility and validity of modelling uncertainty about hidden states and
the impact of conditional independence assumptions implicit in the
difference between DEM and GF. We will show that estimates of
effective connectivity (parameter estimates) from fMRI data are
relatively robust to these fluctuations. Furthermore we demonstrate
the potential usefulness of generalised filtering over its mean-field
variant (DEM), when making inferences about differences in coupling
among brain regions.

This paper comprises four sections. In the first, we present an
illustrative application of generalised filtering to the same fMRI data
set (attention to motion) that we have used previously to demon-
strate DCM using EM (Friston et al., 2003; Stephan et al., 2008) and
DEM (Friston et al., 2008). This section serves to illustrate the nature

of the GF scheme and the results it produces. Our focus here will be on
estimates of hidden neuronal and physiological states causing data
and how their estimation affects inference on the parameters we are
interested in (effective connectivity). Having established that it is
possible to recover estimates of both parameters and states, the
second section turns to the nature of noise or fluctuations in the
hidden states. This section uses model comparison to search over
models with different hyperpriors on the amplitude, form and
smoothness of noise. In the third section, we turn to face validity
and ensure that the accuracy of parameter estimates is robust to the
introduction of state-noise. We generated data with and without
state-noise (using the conditional parameter estimates from the first
section) and fitted stochastic (GF) and deterministic (EM) DCMs.
Using the conditional density on parameters and models, we then
assessed the ability of each DCM to distinguish between data that
were generated with and without state-noise and the impact of false
assumptions about state-noise on parameter estimates. In the final
section, we turn to construct validity and apply DCM to empirical data
from an fMRI study of (clinical) group differences. Our focus here was
on the conditional estimates of effective connectivity from EM, DEM
and generalised filtering. Our objective in these analyses was to see if
the deterministic and mean-field assumptions (implicit in EM and
DEM) improved or subverted the ability of the estimators to
distinguish between groups (under the assumption that group
differences exist), in terms of their functional architectures (i.e.
effective connectivity). We discuss the implications of our findings in
the discussion, paying special attention to endogenous brain activity
in dynamic causal modelling.

Stochastic DCM

In this section, we reanalyse an old data set that has been used
extensively in demonstrating connectivity analyses over the years.
These data were acquired during an attention to visual motion
paradigm and have been used to illustrate psychophysiological
interactions, structural equation modelling, multivariate autoregres-
sive models, Kalman filtering, variational filtering, EM and DEM
(Friston et al., 1997; Büchel and Friston, 1997, 1998; Friston et al.,
2003, 2008; Harrison et al., 2003; Stephan et al., 2008). Here, we
revisit questions about the generation of distributed responses by
analysing the data using conventional deterministic DCMs (EM),
stochastic DCMs under the mean-field approximation (DEM) and
generalised filtering (GF). The mathematical details of these schemes
are described in a series of technical papers (e.g., EM: Friston et al.,
2007; DEM: Friston et al., 2008; GF: Friston et al., 2010). In this paper,
we focus on the products of these schemes and how they differ from
each other. One interesting thing that we will see is that modelling
endogenous fluctuations allows one to infer neuronal and physiological
states explicitly. This provides a different perspective on how to model
brain dynamics, which we will return to in the discussion. We will first
describe the data and then review comparative analyses, under the
three different schemes.

Empirical data

Data were acquired from a normal subject at 2 T using aMagnetom
VISION (Siemens, Erlangen) whole-body MRI system, during a visual
attention study. Contiguous multi-slice images were obtained with a
gradient echo-planar sequence (TE=40 ms; TR=3.22 s; matrix
size=64×64×32, voxel size 3×3×3 mm). Four consecutive 100
scan sessions were acquired, comprising a sequence of 10 scan blocks
of five conditions. The first was a dummy condition to allow for
magnetic saturation effects. In the second, Fixation, subjects viewed a
fixation point at the centre of a screen. In an Attention condition,
subjects viewed 250 dots moving radially from the centre at 4.7 ° per
second and were asked to detect changes in radial velocity. In No
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