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The traditional approach to functional image analysis models images asmatrices of raw voxel intensity values.
Although such a representation is widely utilized and heavily entrenched both within neuroimaging and in
the wider data mining community, the strong interactions among space, time, and categorical modes such as
subject and experimental task inherent in functional imaging yield a dataset with “high-order” structure,
which matrix models are incapable of exploiting. Reasoning across all of these modes of data concurrently
requires a high-order model capable of representing relationships between all modes of the data in tandem.
We thus propose tomodel functional MRI data using tensors, which are high-order generalizations of matrices
equivalent to multidimensional arrays or data cubes. However, several unique challenges exist in the high-
order analysis of functional medical data: naïve tensor models are incapable of exploiting spatiotemporal
locality patterns, standard tensor analysis techniques exhibit poor efficiency, and mixtures of numeric and
categorical modes of data are very often present in neuroimaging experiments. Formulating the problem of
image clustering as a form of Latent Semantic Analysis and using the WaveCluster algorithm as a baseline, we
propose a comprehensive hybrid tensor and wavelet framework for clustering, concept discovery, and
compression of functional medical images which successfully addresses these challenges. Our approach
reduced runtime and dataset size on a 9.3 GB finger opposition motor task fMRI dataset by up to 98% while
exhibiting improved spatiotemporal coherence relative to standard tensor, wavelet, and voxel-based
approaches. Our clustering technique was capable of automatically differentiating between the frontal areas
of the brain responsible for task-related habituation and the motor regions responsible for executing the
motor task, in contrast to a widely used fMRI analysis program, SPM, which only detected the latter region.
Furthermore, our approach discovered latent concepts suggestive of subject handedness nearly 100× faster
than standard approaches. These results suggest that a high-order model is an integral component to accurate
scalable functional neuroimaging.

© 2011 Elsevier Inc. All rights reserved.

Introduction

The traditional approach to data representation utilizes a matrix
structure, with observations in the rows and features in the columns.
Although this model is appropriate for many datasets, it is not always
a natural representation because it assumes the existence of a single
target variable and lacks a means of modeling dependencies between
other features. Additionally, such a structure assumes that observed
variables are scalar quantities by definition. This assumption may not
be valid in certain domains, such as diffusion tensor imaging, where

higher-order features predominate, or in domains which have strong
spatiotemporal components, such as functional MRI.

Traditionally, these problems have been solved by reducing the
features to scalars and fitting the dataset to a matrix structure.
However, as well as potentially losing information, this strategy also
employs a questionable approach from a philosophical standpoint:
attempting to fit the data to an imprecise model rather than
attempting to accurately model the existing structure of the data.
Finally, while it may be possible to model dependencies between
features by repeating the methodology multiple times, each with a
different target variable, this yields suboptimal performance and may
not be computationally feasible when real-time performance is
required or when the dataset is very large.

To address these issues, we propose to model such datasets
using tensors, which are generalizations of matrices corresponding
to r-dimensional arrays, where r is known as the order of the tensor.
Using a combination of wavelet and tensor analysis tools, we propose
a novel framework for summarization, clustering, concept discovery,
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and compression of high-order datasets, which we call TWave
(Barnathan et al., 2010). Applying our technique to analysis of a large
real-world digital opposition fMRI dataset, we compare the perfor-
mance of TWave against voxelwise, SVD-based, wavelet-only, and
tensor-only techniques and demonstrate our TWave method
achieves superior results and reduces computation time vs. compet-
ing methodologies such as Latent Semantic Analysis.

Our approach has several advantages:

• Compression of the data model through grid quantization and
wavelet preprocessing (inherent in the WaveCluster algorithm).

• Exploitation of spatial neighborhoods and local patterns.
• Efficiency up to two orders of magnitude faster than naive tensor
approaches.

• The ability to identify noncontiguous clusters based on patterns in
the projected space.

• Naturally fuzzy clustering based on similarities to discovered
concepts.

• The projected spacemay reveal latent dataset concepts (our method
revealed information about subject handedness in our dataset).

Background

Tensor tools

Tensors are defined within the context of data mining as multi-
dimensional arrays. The number of indices required to index the
tensor is referred to as the order of the tensor, while each individual
dimension is referred to as a mode. The number of elements defined
on each mode is referred to as the mode's dimensionality. The
dimensionality of a tensor is written in the same manner as the
dimensionality of a matrix; for example, 20×50×10.

Tensors represent generalizations of scalars, vectors, and matrices,
which are tensors of orders 0, 1, and 2, respectively. Tensors and the
notion of order are illustrated in Table 1.

An important operation applicable to our analysis is the tensor
product. This product generalizes not from matrix multiplication, but
from the Kronecker product operation defined on matrices, which is
given as follows.

Given an m×n matrix A and a p×q matrix B, the Kronecker
product A⊗B is defined by the following mp×nq block matrix:

A⊗B =
a1;1B ⋯ a1;nB
⋮ ⋱ ⋮

am;1B ⋯ am;nB

0
@

1
A

The tensor product is similar, but the result is another tensor rather
than a block matrix. Specifically, if given order r and s tensors A and B,
their tensor product A⊗B is a tensor of order r+s defined as follows:

A⊗Bð Þi1 ;i2 ;…;ir ;j1 ;j2 ;…;js
= Ai1 ;i2 ;…;ir

� Bj1 ;j2 ;…;js

For example, the procedure of taking a tensor product is shown in
Fig. 1, with arrows representing the direction of multiplication.

The operation known as the Khatri–Rao product is useful in the
computation of several tensor decompositions and is defined in terms
of the Kronecker product. Let A be a p×n matrix and B be a q×n
matrix. Their Khatri–Rao product A⊙B is as follows:

A⊙B = a1⊗b1; a2⊗b2;…; an⊗bn½ �

Singular value decomposition (SVD) is a unique matrix factoriza-
tion by which an m×n matrix is decomposed into two projection
matrices and a core matrix, as follows:

A = U × Σ × VT

whereA is anm×nmatrix,U is anm×r column-orthonormal projection
matrix, V is an n×r column-orthonormal projection matrix, and Σ is a
diagonal r×r core matrix, where r is the rank of the projection.

Singular value decomposition has a wide variety of applications:
for example, truncation of the SVD coefficients provides an optimal
low-rank approximation (i.e. minimizes the Frobenius norm). This
indicates a close relationship between principal component analysis
(PCA) and SVD.

SVD is also used to discover the rank of a matrix, find the
pseudoinverse, and solve least squares minimization problems. Addi-
tionally, the solution to SVD may be used in an unsupervised
summarization technique known as Latent Semantic Analysis (LSA)
(Deerwester et al., 1999). In this technique, A is treated as a term-
document matrix. Here, singular value decomposition automatically
derives a user-specified number of latent concepts from the given terms
which form a basis for the rows and columns of the matrix. The
projection matrices U and V then contain term-to-concept and
document-to-concept similarities, respectively. Thus, SVD can be used
to provide simple yet powerful automatic data summarization. This
technique may be naturally viewed as a form of co-clustering, in which
the rows and columns of a matrix cluster to the same space. An
alternative graphical interpretation exists, in which clusters represent
shared “waypoints” through which edges pass between vertices. Use of
the eigendecomposition or SVD is also common in a graphical context,
where it is known as spectral graph theory; here a common technique is
to cluster on the eigenvector corresponding to the second smallest
eigenvalue of the Laplacian matrix, thereby partitioning vertices along
edges which are likely to be minimal cuts. This technique is known as
Fiedler retrieval. It is also possible to project new query vectors into the
space defined by the SVD, known as folding in; this enables
recommendation as the query projects to the same space as both the
rows and columns and can be assessed using a distance metric.

The natural extension of singular value decomposition to
tensors is known as high-order singular value decomposition, or
HOSVD. This decomposition, in turn, is a special case of the
Tucker decomposition, which is capable of concurrent data co-
clustering across every mode of a tensor. Formally, let A be a tensor
of order r; i.e. A∈Rd1×d2×…×dr . We may then define the Tucker

Table 1
Scalars, vectors, matrices, tensors, and their orders.

1 [1 2 3 4] ( )1
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2
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0 1 2 r

Fig. 1. Graphical example of a tensor product.
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