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Diffusion tensor magnetic resonance imaging (DTMRI) is a non-invasive tool for the investigation of white
matter structure within the brain. However, the traditional tensor model is unable to characterize
anisotropies of orders higher than two in heterogeneous areas containing more than one fiber population.
To resolve this issue, high angular resolution diffusion imaging (HARDI) with a large number of diffusion
encoding gradients is used along with reconstruction methods such as Q-ball. Using HARDI data, the fiber
orientation distribution function (ODF) on the unit sphere is calculated and used to extract the principal
diffusion directions (PDDs). Fast and accurate estimation of PDDs is a prerequisite for tracking algorithms that
deal with fiber crossings. In this paper, the PDDs are defined as the directions around which the ODF data is
concentrated. Estimates of the PDDs based on this definition are less sensitive to noise in comparison with the
previous approaches. A clustering approach to estimate the PDDs is proposed which is an extension of fuzzy c-
means clustering developed for orientation of points on a sphere. MDL (Minimum description length)
principle is proposed to estimate the number of PDDs. Using both simulated and real diffusion data, the
proposed method has been evaluated and compared with some previous protocols. Experimental results
show that the proposed clustering algorithm is more accurate, more resistant to noise, and faster than some of
techniques currently being utilized.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Diffusion of water molecules is conventionally investigated using
diffusion tensor magnetic resonance imaging (DTMRI) that uses a
symmetric positive definite matrix (tensor) to model the diffusion
behavior. Under Gaussian diffusion condition, this model character-
izes the diffusion behavior very well (Basser et al., 1994a, 1994b);
however, it fails tomodel anisotropies of orders higher than two in the
heterogeneous tissues containing more than one fiber population.
Diffusion behavior can be evaluated more accurately if the probability
density function (PDF) of the molecular displacement over diffusion
time is determined from which desirable diffusion indices such as
mean diffusivity, second order tensor (and related anisotropies),
fourth order kurtosis, and even higher order statistics can be

extracted. Estimation of the diffusion PDF conventionally involves
diffusion spectrum imaging (DSI), a modified q-space imaging
method that resolves intra-voxel diffusion heterogeneity by measur-
ing diffusion spectra (Wedeen et al., 2000). This method is clinically
impractical because it takes a long time to acquire the required data.

To address the time complexity, high angular resolution diffusion
imaging (HARDI) and orientation distribution function (ODF) have
been introduced as alternatives to DSI and diffusion PDF, respectively
(Tuch et al., 2002). The ODF requires taking more than 50
measurements of HARDI, each corresponding to a specific gradient
direction. The ODF maintains information about the orientation of the
diffusivity by integrating over the radial component of the PDF in the
spherical domain. The ODF may be estimated using the Funk–Radon
transform, closely approaching the true ODF under certain conditions
(Tuch, 2004). Descoteaux et al. estimated the ODF by a linear
combination of the spherical harmonic coefficients that describe the
diffusion signal within a voxel (Descoteaux et al., 2007).

In previous work (Jansons and Alexander, 2003; Tournier et al.,
2004; Bloy and Verma, 2008; Ghosh et al., 2008), principal diffusion
directions (PDDs) are defined as the directions of the ODF local
maxima. Several methods have been proposed to find the PDDs from
ODF based on this definition. Jansons and Alexander assumed a
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symmetry on the ODF with respect to the position vector x (Jansons
and Alexander, 2003). That means the ODF peaks appear in equal and
opposite pairs. In their method, for each spherical point s on the
sphere S, the set M is defined as follows:

M = x∈S : ODF xð Þ = maxs∈T xð Þ ODF sð Þ
n o

ð1Þ

T xð Þ = s∈S : s−xj jbρf g ∪ s∈S : s + xj jbρf g ð2Þ

where ρ is a constant. The setM contains the candidate PDDs. Starting
at each member of M, the estimates are refined by searching for local
maxima using the Powell's method, a general method for estimation
of the local minima without taking derivatives (Press et al., 2007).
Finally, tiny ODF peaks smaller than the ODF mean are discarded. In
Tournier et al. (2004) and Sakaie and Lowe (2007), the same
strategies are adopted, except for the Powell's method which is
replaced by spherical Newton's method and sequential quadratic
programming (constraint spherical Newton's method) (Cottle et al.,
2009), respectively. The problem of all thesemethods is the likelihood
of getting trapped in small local maxima. In Descoteaux (2008),
assuming that the PDDs are the local maxima of the normalized ODF
projected on a tessellated sphere with a fine mesh, the finite
difference method is applied to the sphere in order to obtain the
PDDs. In this method, if the ODF value for a point is above all of its
neighbors and above 0.5, the point will be reserved as a local
maximum. Thresholding is required in order to diminish minor peaks.
The method, subsequently, is dependent on the threshold value. Plus,
this method is very sensitive to the mesh grid size. Frey et al. (2008)
take derivative of the ODF smoothed by a Gaussian kernel to get the
local maxima. Applying such kernel, which is used to diminish noise,
may degrade the angular resolution of the PDDs. In Bloy and Verma
(2008), the ODF is represented by a symmetric tensor constrained to
the sphere resulting in a homogeneous polynomial representation.
The idea takes advantage of such representation to take analytic
derivatives and find the stationary points of the ODF instead of the
maxima. These stationary points are then classified into primary
maxima (PDDs), secondary maxima, minima and saddle points. In
Ghosh et al. (2008), the stationary points are found by using Lagrange
multipliers and applying the combination of subdivision methods and
generalized normal form algorithms to the resulting polynomial
system. The stationary points are then sorted and thresholded to
extract the PDDs. In this paper, we refer to this technique Poly-Tensor
method. One of the main problems of the Bloy's and Ghosh's methods
is that classifying stationary points in order to get the PDDs may
become erroneous in noisy data condition. In our previous work, we
determined the first principal direction as the gradient direction in
which the ODF is maximum and sorted the other gradient directions
based on their angular distances from this principal direction (Nazem-
Zadeh et al., 2011). We then estimated the envelope of the resulting
1D profile using a movingmaximum filter whose output peaks are the
remaining principal diffusion directions. This method is sensitive to
noise. We refer to this technique as Angular-Distance method. Using
finite difference method, Camino software package (Cook et al., 2006)
locates local maxima by ascertaining all points at which the function is
larger than all other points within a fixed search radius. It then
removes duplicates and tiny peaks with function values smaller than a
pre-specified threshold (Descoteaux et al., 2007). This procedure is
both inaccurate and time-consuming. In addition, the number of PDDs
is restricted to three for estimation and two for visualization. For DTI
data with dimensions 128×128×56, it takes almost a week to find up
to three PDDs for each voxel, using a commonly used personal
computer (Core 2Due CPU, E8400@ 3.00 GHz, 3.00 GHz, and 8 GB
RAM).

All of the above methods define the PDDs as the directions in
which the ODF data is locally maximal. The PDDs, based on this

definition, are sensitive to noise. In addition, some of the methods
post-process the results by discarding tiny ODF detected peaks.
Depending on the kernel width, this may lead to discarding important
diffusivity information. In this paper, the PDDs are defined as the
directions around which the ODF data is concentrated (clustered).
Estimates of the PDDs based on this definition are less sensitive to
noise in comparison with the previous approaches. They may be
related to clustering principles whereby a set of data points is
considered as potential PDDs and examined to determine whether
they properly represent the ODF data. In other words, they are
examined to determine whether theyminimize the overall distance of
the data points from the cluster centers. Unfortunately, this approach
involves an exhaustive search which is very time-consuming when
there are more than two PDDs. To reduce the computational
complexity, we propose an iterative algorithm based on fuzzy c-
means clustering (Dunn, 1973; Bezdek, 1981) in which the cluster
centers and memberships are iteratively updated. Our proposed
algorithm benefits from good features of the fuzzy c-means algorithm
and is sufficiently accurate for practical purposes. It transforms the
original 3D cluster data into a 2D format and thus simplifies
computation. The 2D data points contain co-latitudes and co-
longitudes of the spherical angles.

The ODF can be considered as a convolution of complex fiber
structure, denoted by fODF (fiber ODF), and the ODF response to a
single fiber (ODF kernel). Therefore, fODF can be calculated by
deconvolution of the ODF with the ODF kernel (Descoteaux et al.,
2007; Tournier et al., 2004). The fODF has more distinct lobes and thus
is more appropriate for locating the PDDs. Hence, we apply our
algorithm to the fODF.

Starting with two cluster centers and using the spherical law of
cosines, the proposed approach calculates the arc (geodesic)
distances between points on the sphere and the cluster centers.
The membership values and centers of the clusters are updated
iteratively until convergence is achieved. To automatically determine
the number of clusters, this number is increased by two and the
resulting data representation is evaluated based on the minimum
description length (MDL) criterion (Rissanen, 1989). Applications of
the proposed method to simulated and clinical data show that our
algorithm is more accurate, and easier to implement than current
methods in the literature, especially when the signal-to-noise ratio
(SNR) is low.

Materials and methods

Spherical deconvolution

Expansion of a function on a sphere using spherical harmonics is a
generalization of Fourier series in the spherical coordinates (Mousa
et al., 2006). The diffusion signal at any point of the unit sphere can be
estimated using the spherical harmonic coefficients (SHCs) according
to the equations:

S θ;φð Þ = ∑N
j = 1cjYj θ;φð Þ ð3Þ

where S is the diffusion measurement, θ∈ [0,π] and φ∈ [0,2π] are co-
latitude and co-longitude spherical angles, N is the total number of
coefficients, cj is the jth SHC, and the corresponding harmonic Yj(θ,φ)
is the non-singular separated solution for the Laplace equation on the
surface of the sphere (see Appendix 1). In our previous work (Nazem-
Zadeh et al., 2010), we investigated the characteristics of the SHC
through simulations. The 8th order SHCs can represent diffusion
profiles with a maximum of four major distinct peaks in each voxel
(Descoteaux et al., 2006).

In Q-ball imaging, ODF data are computed from HARDI measure-
ments distributed on a hemisphere using a Funk–Radon transform
(FRT) (Descoteaux et al., 2007). Using the spherical harmonics,
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