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This paper presents a new regression method for functional magnetic resonance imaging (fMRI) activation
detection. Unlike general linear models (GLM), this method is based on selecting models for activation
detection adaptively which overcomes the limitation of requiring a predefined design matrix in GLM. This
limitation is because GLM designs assume that the response of the neuron populations will be the same for
the same stimuli, which is often not the case. In this work, the fMRI hemodynamic response model is selected
from a series of models constructed online by the least angle regression (LARS) method. The slow drift terms
in the design matrix for the activation detection are determined adaptively according to the fMRI response in
order to achieve the best fit for each fMRI response. The LARS method is then applied along with the Moore–
Penrose pseudoinverse (PINV) and fast orthogonal search (FOS) algorithm for implementation of the
selected model to include the drift effects in the design matrix. Comparisons with GLM were made using 11
normal subjects to test method superiority. This paper found that GLM with fixed design matrix was inferior
compared to the described LARS method for fMRI activation detection in a phased-encoded experimental
design. In addition, the proposed method has the advantage of increasing the degrees of freedom in the
regression analysis. We conclude that the method described provides a new and novel approach to the
detection of fMRI activation which is better than GLM based analyses.

© 2010 Elsevier Inc. All rights reserved.

Introduction

The general linear models (GLM) method (Nelder and Wedder-
burn, 1972; Seber and Lee, 2003) has been widely applied for
activation detection in functional magnetic resonance imaging (fMRI)
data analysis (Friston et al., 1995; Worsley et al., 2002). The basic idea
of this method is to construct a designmatrix (model) beforehand and
then, using a least squares method, estimate the regression para-
meters of the model. After obtaining the model parameters, a contrast
matrix for an effect of interest is often defined to compare different
effects. For example, a difference between stimuli is often employed
to detect the brain activation in the first level (single run) of the fMRI
time series analysis. Then the null hypothesis that the effect difference
is zero is tested, and the T statistic for the hypothesis test is the ratio
between the effect difference and the estimated standard deviation
(Worsley et al., 2002).

When using GLM for fMRI activation detection, the first step is to
build a model (designmatrix) of how the neuron population responds
to an external stimulus. The advantage of defining the model
beforehand is that it greatly simplifies the analysis and interpretation

of fMRI data if the model or the design matrix is selected correctly. It
also simplifies the calculations if only a single fixed model for all
neuron population responses in the brain is required. However, these
targets are currently not feasible because the exact neuron response
in different brain regions is unknown. More importantly, it is not
reasonable to assume that all the neurons in the brain respond to the
same stimulus in exactly the same way when it is presented on
different occasions (Glover, 1999). Also, inaccuracies will occur if one
uses the samemodel (designmatrix) for all the neuron populations in
the brain. Therefore, it is necessary to build different models for
different neuron populations in terms of their fMRI responses. This
hypothesis is based on the fact that different neuron populations in
the cortex have different responses (shape, magnitude, hemodynamic
delay, and slow drift etc.) even for the same stimulus. This is
particularly true for retinotopic mapping with phase-encoded design
where hemodynamic delay and shape are important factors (Sereno
et al., 1995; Engel et al., 1997; Smith et al., 2001; Warnking et al.,
2002). Secondly, the order/size of the slow drift for the neuron
population is also not known beforehand, particularly in fMRI
activation detection. A low order drift model often leads to a bigger
T value indicating stronger activation detection, but it be may
insufficient to model the fMRI response when more complex
dynamics are present. On the other hand, a higher ordered drift
model can fit the response well, but has a lower T value with
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decreasing of degrees of freedom (df) for the statistical test. To
overcome such issues it is necessary to develop a new method to
estimate the optimal model order for each voxel in the whole brain.
Lastly, the models in the GLMmethod of fMRI activation detection are
usually not parsimonious, and can be computationally expensive to
implement for online activation detection. To overcome the limita-
tions of GLM in first level fMRI data analysis, a new method which
relies on least angle regression (LARS) (Efron et al., 2004) is proposed.

This paper is organized as follows. The paper begins with the GLM
method for fMRI activation detection. Subsequently, details of how the
LARS method is derived from the GLM method for the fMRI activation
detection are presented. The LARSmethod for fMRI activation detection
is then introduced and two algorithms (Moore–Penrose pseudoinverse
(PINV) and fast orthogonal search (FOS)) for implementation of the
method are detailed. Finally, the LARS method is applied to study 11
normal subjects with a phase-encoded experimental design. A
comparison between the LARS and conventional GLM method is
provided and the paper concludes with a discussion of the performance
and future application of the proposed method.

Materials and methods

GLM for phase-encoded design

The well-known GLM method for activation detection in the first
level (single run) of fMRI data analysis (Worsley et al., 2002) is:

Yt = u1β0 + u2β1 + ⋯ + ukβk−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
input

+ xt;1βk + xt;2βk + 1 + ⋯ + xt;pβp−k + 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
drift

+ et ð1Þ

where Yt is the fMRI response at time index t;βp is the coefficient; uk is
the experimental design (or brain system input);xt,p is the constant
term tomodel the slow drift; k is the number of inputs; p−k+1 is the
number of drift terms in the model; et is the error term. For the single
input phase-encoded design, we have k=1, i.e.:

Yt = u1βt;0|fflffl{zfflffl}
input

+ xt;1β1 + xt;2β2 + ⋯ + xt;pβp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
drift

+ et ð2Þ

Eq. (2) can be written in matrix form as:

Yt = X′
tβ + et ð3Þ

where Xt′=[u1,xt,1,xt,2,⋯,xt,p], and β=[β0,β 1,⋯,β p]′. In the GLM for
the fMRI activation detection, the solution of Eq. (3) is then:

β̂ = argmin
β ‖Yt − ∑

p

i=1
xt;1βi−u1β0‖ ð4Þ

where p is the size of the design matrix for slow drift. If the design
matrix Xt′ and input u1 are fixed for all neuron populations, this is the
conventional GLM method for activation detection. Eq. (3) can be
solved by the PINV method i.e., βˆ =Xt

+Yt, where Xt
+ is the Moore–

Penrose pseudoinverse of matrix Xt′. For large fMRI datasets, the FOS
algorithm (see appendix) can be employed to solve the equation. The
xt,1 constant (zero-th order xt,1 component) and higher order
polynomial (xt,2,⋯,xt,p) components providing the slow drift term
(Bandettini et al., 1993) contributions to response Yt can also be
described by the cosine transform basis functions (Friston et al., 1995)
or splines (Smith et al., 1999; Worsley et al., 2002; Tanabe et al.,
2002). In this study, we used 0–14th order polynomials to model the
slow drift, i.e. , xt,1=1,xt,2=x,⋯, and xt,15=x14.

LARS for activation detection

To model the neuron population according to the fMRI response,
consider the following optimization problem:

β̂ = argmin
β ‖Yt− ∑

p

i=1
Xt;iβi−u1β0‖ subject to ∑

p

i=1
j βij + jβ0j

� �
≤s ð5Þ

where s≥0 is the turning parameter. A large s will result in the
ordinary least squares estimation. However, smaller values of s
produce shrunken estimates of βˆ , often with many components equal
to zero. Eq. (5) can also include other hemodynamic models (inputs)
for selection (for the phase-encoded design, we use only one input
u1), so that choosing s becomes a model selection procedure for
modelling the hemodynamic response and drift terms. There are
several algorithms such as LASSO that can do this (Donoho and Elad,
2003; Huo and Ni, 2007; Hesterberg et al., 2008).

Modelling the hemodynamic response

For the input function u1, two gamma functions (Glover, 1999),
block convolution with Gaussian function (Smith et al., 2001) or a
sinusoidal function (Lange and Zeger, 1997) can be employed to
model the system input. In the phase-encoded design and standard
block design (periodic blocked paradigms), u1 can be determined by
fast Fourier transformation (FFT) of the fMRI time series and the
fundamental frequency of the response is used to model the input
u1for each voxel to estimate the fMRI response (system input)
adaptively. The fundamental frequency of the fMRI response can also
be used to estimate the hemodynamic delay (response phase). After
the delay has been calculated, the model can be constructed online,
and the model is adaptive to the fMRI delay. We include three widely
used hemodynamic models for brain system input selection:

1. Because the stimuli are changing periodically, the sinusoidal
function can be regarded as a brain system input; i.e. the periodical
square block wave (experimental design) can be approximated by
the fundamental frequency of the wave. The FFT analysis method is
a powerful way to model the hemodynamic response for the
periodical change stimuli, the hemodynamic function can be
written as (Li et al., 2007a):

ft;1 = a cosðωt + θÞ ð6Þ

where θ is the delay/onset or phase of the response, and can be
estimated using the FFT method; ω is the angular frequency,
ω=2πf, where f is the frequency of the stimulus/input; a is the
magnitude.

2. After the delay/onset is estimated by the FFT analysis, a two-
gamma function is built according to the following equation
(Glover, 1999):

ft;2 = ð t
d1

Þa1expð− t−d1
b1

Þ−cð t
d2

Þa2expð− t−d2
b2

Þ ð7Þ

where a1=6;b1=0.9;d1=a1×b1; c=0.35; b2=0.9;a2=12;
d2=a2×b2, are the typical parameters.

3. We also include the block function convolve with Gaussian
function (Smith et al., 2001) to model the shape (i.e. duty cycle
changes in the response); the model base function is:

ft;3 = ðblockÞ⊗ðexpð−ð tffiffiffi
2

p
c
Þ2Þ ð8Þ

where block is the block function (for example Figs. 1A and 2A).
The full width at half maximum (FWHM) is determined according
to: FWHM=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þ

p
c.
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