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This paper presents a framework for creating neural field models from electrophysiological data. The Wilson
and Cowan or Amari style neural field equations are used to form a parametric model, where the parameters
are estimated from data. To illustrate the estimation framework, data is generated using the neural field
equations incorporating modeled sensors enabling a comparison between the estimated and true parameters.
To facilitate state and parameter estimation, we introduce a method to reduce the continuum neural field
model using a basis function decomposition to form a finite-dimensional state-space model. Spatial frequency
analysis methods are introduced that systematically specify the basis function configuration required to
capture the dominant characteristics of the neural field. The estimation procedure consists of a two-stage
iterative algorithm incorporating the unscented Rauch–Tung–Striebel smoother for state estimation and a
least squares algorithm for parameter estimation. The results show that it is theoretically possible to
reconstruct the neural field and estimate intracortical connectivity structure and synaptic dynamics with the
proposed framework.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Generating physiologically plausible neural field models is of great
importance for studying brain dynamics at the mesoscopic and
macroscopic scales. While our understanding of the function of
neurons is well developed, the overall behaviour of the brain's
mesoscopic and macroscopic scale dynamics remains largely theo-
retical. Understanding the brain at this level is extremely important
since it is at this scale that pathologies such as epilepsy, Parkinson's
disease and schizophrenia are manifested.

Mathematical neural field models provide insights into the
underlying physics and dynamics of electroencephalography (EEG)
and magnetoencephalography (MEG) (see Deco et al. (2008); David
and Friston (2003) for recent reviews). These models have demon-
strated possible mechanisms for the genesis of neural rhythms (such
as the alpha and gamma rhythms) (Liley et al., 1999; Rennie et al.,
2000), epileptic seizure generation (Lopes Da Silva et al., 2003;

Suffczynski et al., 2004; Wendling et al., 2005) and insights into other
pathologies (Moran et al., 2008; Schiff, 2009) that would be difficult to
gain from experimental data alone.

Unfortunately, the use of these models in the clinic has been
limited, since they are constructed for “general” brain dynamics
whereas pathologies almost always have unique underlying patient-
specific causes. Patient-specific data from electrophysiological record-
ings is readily available in the clinical setting, particularly from
epilepsy surgery patients, suggesting an opportunity to make the
patient-specific link to models of cortical dynamics. Furthermore,
recent technological advances have driven an increased level of
sophistication in recording techniques, with dramatic increases in
spatial and temporal samplings (Brinkmann et al., 2009). However,
the mesoscopic and macroscopic neural dynamic states are not
directly observable in neurophysiological data, making predictions of
the underlying physiology inherently difficult.

For models to be clinically viable, they must be patient-specific. A
possible approach to achieve this would be to fit a general continuum
neural field model, like the Wilson and Cowan (1973) (WC) or Amari
(1977) models, or a neural mass model like the Jansen and Rit (1995)
model, to patient-specific data. Fitting the neural models to
individuals is a highly non-trivial task. Recently, however, this task
has been approached from a number of standpoints. The first paper on
patient-specificmodeling (to the authors' best knowledge) came from
Valdes et al. (1999), where they fit the neural mass model of Lopes Da
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Silva et al. (1976) and Zetterberg et al. (1978) to EEG data using the
local linearization filter (Ozaki, 1993; 1994; Ozaki et al., 2000). This
paper demonstrated for the first time the feasibility of assimilating
data with neural models of EEG.

Perhaps the most accepted estimation framework for neural mass
models is dynamical causal modeling (DCM) (David and Friston,
2003; David et al., 2006), which has been proposed for studying
evoked potential dynamics. This framework can be viewed as an
extension to the work of Valdes et al. (1999) allowing for coupling of
neural masses. Via a Bayesian inference scheme, DCM estimates the
long range (cortico-cortical) connectivity structure between the
specific isolated brain regions that best explains a given data set
using the model of Jansen and Rit (1995).

Data-driven neural modeling was extended to the continuum
approximation by Galka et al. (2008), where they proposed an
estimation framework based on a linear damped wave equation.
Using a Kalman filter maximum likelihood framework, they improved
on the low resolution electromagnetic tomography (LORETA) method
for solving the inverse EEG problem. Another continuum neural field
model-based estimator was developed by Daunizeau et al. (2009), as
an extension to the DCM framework. They argue that using a spatially
extended continuum field model is superior for explaining cortical
function than the neural mass DCM, since field models can explain a
richer repertoire of dynamics such as traveling waves and bump
solutions.

Another recent approach estimates the parameters of a modified
WC neural field model using an unscented Kalman filter (Schiff and
Sauer, 2008). This work takes a systems theoretic approach to the
neural estimation problem, successfully demonstrating that it is
possible to perform state estimation and control on spatiotemporal
neural fields. This marks the first step in what has the potential to
revolutionize the treatment of many neurological diseases where
therapeutic electrical stimulation is viable. For other valuable
contributions to data-driven neural modeling, see Nunez (2000),
Jirsa et al. (2002), and Robinson et al. (2004).

We present an extension to the work of Schiff and Sauer (2008) by
establishing a framework for estimating the state of theWC equations
for larger scale (more space) systems via a systematic model
reduction procedure. In addition, a new method is presented for
estimating the connectivity structure and the synaptic dynamics. Until
now, model-based estimation of local intracortical connectivity has
not been reported in the literature (to the best of the authors'
knowledge). Our study also extends recent work which shows that it
is possible to estimate local coupling of spatiotemporal systems using
techniques from control systems theory andmachine learning (Dewar
et al., 2009). The key development of this previous work was to
represent a spatiotemporal system as a standard state-space model,
with the number of states independent of the number of observations
(recording electrodes in this case). In addition, the appropriate model
selection tools have been developed (Scerri et al., 2009) allowing for
the application of the technique to neural fields. This paper extends
the linear framework of Dewar et al. (2009) and Scerri et al. (2009) to
the nonlinear case required for the neural field equations.

Modeling the neural dynamics within this framework has a
distinct advantage over the more standard multivariate auto-
regressive (MVAR) models: the number of parameters to define the
spatial connectivity is considerably smaller than the number of AR
coefficients typically required to achieve the model complexity.

In this paper, we demonstrate for the first time how an
intracortical connectivity kernel can be inferred from data, based on
a variant of the Wilson and Cowan (1973) neural field model. This
work provides a fundamental link between the theoretical advances
in neural field modeling and high resolution intracranial electrophys-
iological data. To illustrate the estimation framework, data is
generated using the neural field equations incorporating modeled
sensors enabling a comparison to bemade between the estimated and

true parameters. The paper proceeds by first describing the contin-
uum neural field equations that are used as the cortical model. Then a
finite-dimensional neural fieldmodel is derived. Themodel is reduced
by approximating the neural field using a set of continuous basis
functions, weighted by a finite dimensional state vector. The next
section establishes conditions, using spatial frequency analysis, for
both sensor and basis function spacing and width, such that the
dominant dynamics of the neural field can be represented by the
reduced model. The state and parameter estimation procedure is
described in the following section. The results for the spatial
frequency analysis and parameter estimation are then presented.
Finally, the implications and limitations of this framework are
discussed along with planned future developments.

Methods

Neural field model

Neural field models relate mean firing rates of pre-synaptic neural
populations to mean post-synaptic membrane potentials. They are
popular as they are parsimonious yet have a strong link with the
underlying physiology. Each neural population represents a functional
cortical processing unit, such as a column. The columnar organization
of the cortex is continuous, where pyramidal cells are members of
many columns. In general, cortical structure can be modeled in a
physiologically plausible manner as being locally homogeneous (in
short range intracortical connectivity) and heterogeneous (in long
range cortico-cortical and corticothalamic connectivity) (Jirsa, 2009;
Qubbaj and Jirsa, 2007). In certain regions of the cortex, each column
is thought to be connected locally via symmetric short range local
excitation with surround inhibition (Braitenberg and Schüz, 1998).
For example, this structural organization is most studied in the visual
system, where the surrounding inhibition effectively tunes a cortical
column to a particular receptive visual field (Sullivan and De Sa,
2006). Neural field models are descriptive of a range of neurody-
namics of the cortex such as evoked potentials, visual hallucinations
and epileptic behaviour (David and Friston, 2003; Bressloff et al.,
2001; Breakspear et al., 2006). Field models are also capable of
generating complex spatial patterns of activity such as Turing
patterns, spirals and traveling oscillations (Amari, 1977; Coombes,
2005; Coombes et al., 2007).

It is an implicit assumption that the neural field model (in Eq. (12))
provides an apt description of the cortical dynamics recorded from a
specific subject. Althoughmodels of this formare capable of describing a
variety of cortical dynamics, there will be without doubt a mismatch
between the cortex and the model. Nevertheless, there is a sufficient
volume of interesting results from theoretical studies using theWCfield
equations that warrants the data assimilation framework. An advantage
in using a lumped-parameter field model over a more detailed
mathematical description is that the myriad of parameters that might
influence excitability, such as specific ion concentrations, are considered
to be lumped into parameters (connectivity kernel coefficients) that
effectively describe the net system gain. Therefore, there are less
parameters to estimate. Amajor challenge inmodel-based data analysis
for the mass action of the brain is to make models sufficiently detailed,
such that the parameters are meaningful, but simple enough to yield
clear insights that can be related to theoretical studies (from both
neuroscience and engineering perspectives).

Integro-difference equation neural field model

The combination of modeling techniques in this paper leads to a
large amount of notation, so a reference of the symbols used is
provided in Table 1. The model relates the average number of action
potentials g r; tð Þ arriving at time t and position r to the local post-
synaptic membrane voltage v r; tð Þ. The post-synaptic potentials
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