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ABSTRACT

Thickness measurements of the cerebral cortex can aid diagnosis and provide valuable information about the
temporal evolution of diseases such as Alzheimer's, Huntington's, and schizophrenia. Methods that measure
the thickness of the cerebral cortex from in-vivo magnetic resonance (MR) images rely on an accurate
segmentation of the MR data. However, segmenting the cortex in a robust and accurate way still poses a
challenge due to the presence of noise, intensity non-uniformity, partial volume effects, the limited resolution
of MRI and the highly convoluted shape of the cortical folds. Beginning with a well-established probabilistic
segmentation model with anatomical tissue priors, we propose three post-processing refinements: a novel
modification of the prior information to reduce segmentation bias; introduction of explicit partial volume
classes; and a locally varying MRF-based model for enhancement of sulci and gyri. Experiments performed on
a new digital phantom, on BrainWeb data and on data from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) show statistically significant improvements in Dice scores and PV estimation (p<10~2) and also

increased thickness estimation accuracy when compared to three well established techniques.

© 2011 Elsevier Inc. All rights reserved.

Introduction

The thickness of the cortex has been found to have an important
correlation to various diseases such as Alzheimer's (Lerch et al., 2005;
Du et al., 2007; Lehmann et al., in press), Huntington's (Rosas et al.,
2008), schizophrenia (Nesvag et al., 2008), and also to normal ageing
(Shefer, 1973; Salat et al., 2004; Thambisetty et al., 2010). Automatic
extraction of measurements from the cortex, such as thickness, has the
potential to provide a biomarker for diagnosis and disease progression
(Desikan et al., 2009). However, algorithms for the reliable extraction
of the cortical layer are still in need of improvement. From a technical
point of view, this problem is intrinsically complex due to the
convoluted shape of the cortex and the fact that its normal thickness
(2.541.5 mm, (von Economo, 1929) is close to the typically acquired
MRI voxel dimensions (=~1 mm isotropic). This task is further
hampered by the presence of noise, partial volume (PV) effects and
intensity non-uniformity (INU) across the image.
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Segmentation of the brain into its different tissue types has been
proposed using methods based on morphological operations (Mangin
et al.,, 1995), edge detection (Tang et al., 2000), fuzzy c-means (Pham,
2002; Wang and Fei, 2009) and probabilistic models. Probabilistic
mixture models fitted with the expectation maximisation (EM)
algorithm form the basis of several image segmentation methods
(Wells et al,, 1996; Van Leemput et al., 1999b; Zhang et al., 2001;
Ashburner and Friston, 2005). These EM-based image segmentation
algorithms were shown to be among the most accurate and robust
(Klauschen et al., 2009). Wells et al. (1996) segments the brain into
three main tissue types (white matter, grey matter and cerebrospinal
fluid), modelling each class as normal distribution after log transfor-
mation to make the bias field additive, and assumes a Gaussian
distributed bias field model to correct for intensity non-uniformity.
Van Leemput et al. (1999b) added a spatial consistency model based
on a Markov Random Field (MRF), explicit modelling of the INU with
polynomial basis functions, and some prior information about the
brain anatomy to initialise and locally constrain the segmentation.
Ashburner and Friston (2005) combined image registration with
tissue classification, and bias field correction in an elegant unified
framework. Despite these advances, the problems of intensity non-
uniformity (INU), partial volume effect (PV), noise, image artefacts,
limited resolution and the great degree of natural variability, mean
that the local intensity difference is not enough to provide an accurate
segmentation of fine structures. These problems can lead to an
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incorrect delineation of problematic areas like PV-corrupted grey
matter folds, resulting in incorrect segmentations. The use of prior
knowledge may also cause problems in areas that have a high degree
of natural variability, as the prior information is representative of a
sample of a normal population and might not describe a particular
subject. The use of probabilistic priors becomes more problematic
when an atlas derived from a normal population is used to segment
patients with different anatomical or pathological characteristics.

The methods described above are global brain segmentation
methods, and are not specifically designed for the cortical layer. In
this paper we are interested specifically in cortical segmentation as an
input to a voxel-based cortical thickness algorithm. Cortical thickness
estimation methods can be broadly categorised into two types:
surface-based (Fischl and Dale, 2000; Kim et al., 2005) and voxel-
based methods (Jones et al., 2000; Hutton et al., 2008; Lohmann et al.,
2003; Acosta et al., 2009). Surface-based approaches fit a triangulated
mesh to the internal and external surface of the cerebral cortex. These
surface-based methods work in the continuous domain and can
achieve sub-voxel accuracy and robustness to image noise due to
mesh smoothness constraints. However, these methods are compu-
tationally very demanding (normally above 10 h), and often require
laborious manual interaction at several stages. Surface-based methods
can also produce biased results due to the implicit surface model and
topology constraints (MacDonald et al., 2000; Srivastava et al., 2003;
Kim et al., 2005; Thompson et al., 2005; Scott et al., 2009).

In contrast, voxel-based techniques that work directly in the 3D
voxel grid are much more computationally efficient but are more
prone to noise, PV and INU effects and topological errors. To locally
improve the detection of PV corrupted sulci, Han et al. (2004) and
Acosta et al. (2008) used the information derived from a distance
based cost function as a post processing step to try to solve this
problem. Hutton et al. (2008) used a layering method based on
mathematical morphology to detect deep sulci. However, these
approaches are post processing steps; they do not take the new
information into account to improve the segmentation. They are also
only concerned with improvements in the delineation of deep sulci
though the same problems can occur in thinned gyri due to white-
matter tissue loss, PV effects and structural readjustments.

In this paper we improve a probabilistic segmentation framework
with three novel modifications in order to reduce the influence of the
priors in an anatomically coherent way and improve the PV
estimation and the delineation of deep sulci and gyri (Fig. 1). Both
the solution of the EM algorithm and the information derived from a
geodesic distance function are used to locally modify the priors and
the weighting of the MRF, enabling the detection of small variations in
intensity while maintaining robustness to noise. An MRF energy
matrix derived from the anatomical properties of the brain is used to
add topological and shape knowledge to the MRF. Although full
topological correctness is not ensured, the proposed MRF energy
matrix improves the topological characteristics of the segmentation
and reduces the PV layer thickness, making it more in line with the
theoretical anatomical limit. The implicit modelling of PV and the
reduction of the PV layer thickness obviates the need for an empirical

threshold to distinguish between pure and mixed voxels and eases the
problem of achieving subvoxel accuracy when calculating the cortical
thickness.

Method
Intensity model and MRF regularisation

Starting from the image model developed by Van Leemput et al.
(1999b), let i€{1,2,,n} index the n voxels of an image domain. For
coregistered multimodal datasets, intensities form feature vectors
yiER™; for simplicity, we assume unimodal data with m=1. Let z
denote the tissue type to which voxel i belongs. For K tissue types,
zi=ey for some k, 1<k<K where e, is a unit vector with the kth
component equal to one and all the other components equal to zero.

AsinVan Leemput et al. (1999a) we represent an INU bias field as a
linear combination Y_4_ ; ¢j¢; of ] smoothly varying basis functions ¢;
(x), where x denotes the spatial position and C={cy,¢3,...,¢;} denote
the bias field parameters. For mathematical convenience and similarly
to Garza-Jinich et al. (1999), Wells et al. (1996), Van Leemput et al.
(1999b) and Zhang et al. (2001), we assume that the intensity of the
voxels that belong to class k are normally distributed after log
transformation with mean i, and standard deviation 0 grouped in
Ok = {1, Or}. Let @y,={04,0,,...,0(C} represent the overall model
parameters. This log transformation of the data makes the multipli-
cative bias field additive, ameliorating problems with numerical
stability and enabling the existence of a linear least square solution for
the coefficient optimisation (Van Leemput et al., 1999b).

Defining &, as the model parameters, the overall probability
density for y; is
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with
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where G, () denotes a zero-mean normal distribution with standard
deviation 0y. Eq. (1) can be seen as a mixture of normal distributions.

Thus, by assuming statistical independence between voxels, the
overall probability density for the full image can be given by

I(vidy) = T1f (vilp) 3)

The Maximum Likelihood (ML) parameters for @, can be found by
maximisation of f(y|®,), giving the following update equations for the
model parameters:
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Fig. 1. Segmentation of a BrainWeb T1-weighted dataset with 3% noise and 20% INU: left) BrainWeb ground truth segmentation; centre) MAP with MRF but without the proposed

improvements; right) proposed method.
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