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Introduced is a general framework for performing group-level analyses of fMRI data using any basis set of
two functions (i.e., the canonical hemodynamic response function and its first derivative) to model the
hemodynamic response to neural activity. The approach allows for flexible implementation of physiologi-
cally based restrictions on the results. Information from both basis functions is used at the group level and
the limitations avoid physiologically ambiguous or implausible results. This allows for investigation of specific
BOLD activity such as hemodynamic responses peaking within a specified temporal range (i.e., 4–5 s). The
general nature of the presented approach allows for applications using basis sets specifically designed to
investigate various physiologic phenomena, i.e., age-related variability in poststimulus undershoot,
hemodynamic responses measured with cerebral blood flow imaging, or subject-specific basis sets. An
example using data from a group of healthy young participants demonstrates the methods and the specific
steps to study poststimulus variability are discussed. The approach is completely implemented within the
general linear model and requires minimal programmatic calculations.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Previous work has demonstrated that the hemodynamic response
(HDR) to neural activitymeasuredwith blood oxygen level dependent
(BOLD) fMRI varies across the brain and across individuals (Aguirre et
al., 1998; Handwerker et al., 2004). This poses a problem for accurate
quantification of an individual's BOLD activation when a canonical
hemodynamic response function (HRF), i.e., a generalized model of
the HDR is used. A simple solution to this problem has been to
estimate an individual's HDR using simple visual or motor tasks
(D'Esposito et al., 1999; Zarahn et al., 1997), resulting in an estimate of
an individual's specific HRF model for use in their statistical analyses.
Although this approach is an advance over the canonical HRFmodel, it
has its own drawbacks: it requires additional scans, which cannot be
acquired retrospectively, and fails to capture any intraindividual
variance that may exist between the region used to derive the HRF
and regions of interest for the main experiment. Therefore, this
method still leaves potentially unaccounted for variance in the
estimate of the BOLD HDR across regions of the brain.

One approach to capturing intraindividual variance in the BOLD
HDR is with basis sets. Instead of a single function to model the HDR, a
basis set uses multiple (typically two or three) related functions.

Through weighted combinations of the functions, many HDR shapes
may be modeled, allowing for investigations of hemodynamic
variability in a variety of patient populations with various sensory
stimuli (Ford et al., 2005; Handwerker et al., 2004; Salek-Haddadi et
al., 2006; Stevens et al., 2005; Wierenga et al., 2008). The most
prominent basis set currently used is derived from a series expansion
of the standard ‘double-gamma’ HRF model (Friston et al., 1998;
Glover, 1999). Other similar basis sets have been developed using a
principal components analysis (PCA) of large sets of physiologically
plausible BOLDHRFs (Friman et al., 2003; Liao et al., 2002;Woolrich et
al., 2004). Of particular note is the work by Liao et al. (2002) who
designed a basis set to be sensitive to large delays in the BOLD
response to stimulation. This approach demonstrates the feasibility
that basis sets may be developed to address specific physiological or
clinical questions.

Unfortunately, one drawback of using any basis set is that many
model fits result in physiologically ambiguous or implausible results
(Calhoun et al., 2004; Woolrich et al., 2004). Restrictions on the
potential model fits are therefore required to limit a basis set to
plausible shapes. One approach to do so is to only investigate
estimated HDRs that have a time to peak within a specific time
window (Calhoun et al., 2004; Henson et al., 2002). While this
approach may improve analyses at the individual level, translating
these results to higher-level statistical analyses presents it own
difficulties (Calhoun et al., 2004; Friman et al., 2003; Kiehl and Liddle,
2001; Worsley and Taylor, 2006). The main such difficulty regards the
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manner of excluding or including the variance accounted for by the
multiple basis functions. One approach to deal with this variance is to
fit a basis set and then only perform higher level analyses on the
primary basis function, thus excluding the variance attributed to the
secondary basis function(s) (Kiehl and Liddle, 2001). An alternative
approach is to include the variance accounted for by all functions in
the set at higher level analyses by using the magnitude calculated
across the basis function estimates for higher level analyses (Calhoun
et al., 2004).

The specific implementation of Calhoun et al. (2004) addresses
some of the concerns of using a basis set for group-level analyses.
This approach, however, is not general enough for use with other
basis sets and requires specific normalization of the regressors in
the model. The result is that the specific ratio described in their
work is only meaningful with the basis set they used and would
have a different meaning if directly applied to other basis sets, i.e.,
FLOBS as implemented with the FSL package. In addition, the
canonical HRF, and its first derivative basis set, is specifically
sensitive to temporal shifts, making it unsuitable for study of other
physiological variations such as poststimulus undershoot variations.
For instance, systematic differences in the size of the poststimulus
undershoot between young and elder healthy participants were
found in one study (Wierenga et al., 2008), while another study
found no significant differences in the BOLD HDR shape between
age groups (D'Esposito et al., 2003). In addition, growing application
of BOLD fMRI to study disease states (Matthews et al., 2006) may
introduce important variations in BOLD HDR shapes which need to
be addressed. Specifically, studies of the hemodynamic responses to
epileptiform discharges have shown large variability in the BOLD
response as a function of proximity to the discharge site (Lemieux
et al., 2008; Salek-Haddadi et al., 2006).

Importantly, the current advance of cerebral blood flow imaging
(CBF fMRI) also requires that many of the original questions regarding
the shape and variability of hemodynamic responses be revisited with
this hemodynamic marker. For instance, in a recent study using BOLD
and CBF fMRI, age-related differences were found, within subject, in
the poststimulus undershoot using CBF but not in BOLD (Ances et al.,
2009). This suggests that the underlying hemodynamic response of
CBF and BOLD fMRI differ and the same HRF model may not be
optimal. Therefore, with CBF fMRI, new hemodynamic response
models, and therefore basis sets, will need to be developed to be
specifically sensitive to this new imaging modality (Woolrich et al.,
2006; Yang et al., 2000). This is a clear instance in which there is a
need for a general approach to group-level analyses with basis
functions.

This technical note presents an approach using the general linear
modeling framework (i.e., using the SPM or FSL packages) to address
the two main limitations of using a basis set: the need for model
fitting restrictions and the need for a means of translating individual-
level improvements in model fitting to higher-level analyses. The
approach is straightforward and applicable to any basis set, allowing
for flexible designations of physiological limitations, thereby correct-
ing many of the difficulties presented when using basis sets. The
specific normalizations of the design matrix required for this
approach are calculated so that they may be performed after model
estimation; therefore, no modifications are required to the design
matrix as created by SPM or FSL. Furthermore, with such a general
framework, it is possible to investigate more subtle questions
regarding hemodynamic responses to neural activity. One potential
application of this method will be to investigate the physiological
origins of variations in the poststimulus undershoot measured with
BOLD and CBF fMRI. An approach to addressing such a question is used
as a specific example and laid out in detail later in the paper. Other
applications will include the study of the spatial dynamics of BOLD
responses to epileptic seizures (Lemieux et al., 2008) or investigation
of the spatial variability of the temporal delay of BOLD responses. Data

from a group of young participants engaged in a simple visual
experiment are used to demonstrate the methods and software to
implement the key calculations (for SPM or FSL) are posted at: http://
cumc.columbia.edu/dept/sergievsky/cnd/steffener.html.

Methods

Participants

Ten young healthy volunteers (50% females; mean age=
23.9 years±5.4; education=15.4±2.4 years) participated in the
fMRI study. The studywas approved by the New York State Psychiatric
Institute IRB and all subjects provided informed consent.

fMRI parameters

Scanning used a Philips Medical Systems Intera 1.5 T machine with
echo planar imaging (EPI) capabilities (TR/TE=3000/50 ms,
flip=90°, slice thickness=5 mm (no gap), 32 slices, orientation
angle of 30° to the AC–PC line, FOV=20×20 cm, and a 64×64
matrix). High-resolution T1-SPGR images were acquired to aid in
coregistration and anatomical localization (TR/TE=25/3 ms,
flip=45°, slice thickness=2 mm (no gap), FOV=23×23 cm, and a
256×256 matrix).

Task description

The visual task used a 2-Hz reversing checkerboard for 12 s
alternated with 30 s of fixation on a central cross-hair for five cycles
projected to the center of the subject's field of view via a rear
projection screen. A laptop computer (Dell 5150) using a custom-
developed program (LabView 7.1, National Instruments Corp.)
presented the stimulus. An extra 6 s (2 scans) of data were acquired
and discarded at the beginning of each functional run to account for
MR saturation effects. The final result was 80 EPI scans comprising a
single functional run.

Image preprocessing

All image preprocessing and statistical analyses were implemen-
ted using SPM5 (Wellcome Department of Cognitive Neurology). All
EPI images were corrected for motion by realigning to the first volume
of the series. The T1-weighted (structural) image was coregistered to
the first EPI volume using mutual information. This coregistered high-
resolution image was then used to determine the linear and nonlinear
parameters for transformation into a standard space defined by the
Montreal Neurologic Institute (MNI) template brain supplied with
SPM5. This transformation was then applied to the EPI data which
were resliced using bilinear interpolation to 2×2×2 mm final voxel
dimensions and spatially smoothedwith an 8×8×8mm FWHM (full-
width at half-maximum) Gaussian kernel.

Subject-level statistical modeling

The functional data were modeled using a box-car representation
of the stimulus vector convolved with the basis set consisting of the
canonical double-gamma model of the HRF and its first derivative
using SPM5's default parameters (Fig. 1A). The regressionmodel using
the basis set was therefore

x1 = sTHRF ð1Þ

x2 = sT
AHRF
At

� �
ð2Þ

yt = β0 + β1 � x1 + β2 � x2 + et ð3Þ
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