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Brain tractography techniques utilize a set of diffusion-weighted magnetic resonance images to reconstruct
white matter tracts, non-invasively and in-vivo. Streamline tracking techniques propagate curves from a
seed to imply connectivity to distal voxels. Alternative approaches have been developed that attempt to
quantify connection strength between all voxels and the seed. Tractography based on graph theory is
amongst them. Despite its potential, graph-based tracking through complex fibre configurations has not
been extensively studied and existing methods have inherent limitations. Anatomically unlikely connections
may be identified in fibre crossing regions, by assigning relatively high connection strengths to all crossing
populations. In this study, we discuss these limitations and present a new approach for robustly propagating
through fibre crossings, as described by the orientation distribution functions (ODFs) derived from Q-ball
imaging. Each image voxel is treated as a graph node and graph arcs connect neighbouring voxels. Weights
representative of both structural and diffusivity features are assigned to each arc. To account for the
existence of crossing fibre populations within a voxel, complex ODFs are decomposed into components
representative of single-fibre populations and an image multigraph is created. The multigraph is searched
exhaustively, but efficiently, to find the strongest paths and assign connectivity strengths between a seed
and all the other image voxels. A comparison with the existing graph-based tractography as well as Q-ball
driven front evolution tractography is performed on simulated data, and on human Q-ball imaging data
acquired from five healthy volunteers. The new approach improves the connection strengths through fibre
crossing regions, reducing the strengths of paths that are less anatomically plausible.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Diffusion-weighted (DW) MRI (Turner and Le Bihan, 1990) allows
the reconstruction of brain white matter (WM) pathways non-
invasively and in-vivo (Basser et al., 2000; Catani et al., 2002; Mori
and van Zijl, 2002). DW images are utilized to estimate the underlying
neuronal fibre orientations or orientation distribution functions
(ODFs) (Alexander, 2006) in each image voxel, with an ODF reflecting
the angular profile of the diffusion scatter pattern (Tuch, 2004). These
estimates can then be used by tractography algorithms (Mori and van
Zijl, 2002) to study brain anatomical connectivity (Hagmann et al.,
2008).

Q-ball imaging (Tuch, 2004) is a model-free DW-MRI technique
that allows reconstruction of the diffusion ODF. Due to the relatively

high angular resolution of the acquisition protocol and the increased
diffusion sensitization, it can capture subtle diffusion displacements of
water molecules. In contrast to the single-peaked Gaussian ODF
model used in diffusion tensor imaging (Basser et al., 1994), Q-ball
imaging can reconstruct multi-peaked ODFs in cases of intra-voxel
fibre crossings. In this study, we apply elements of graph theory on
ODFs derived from Q-ball images to reconstruct WM tracts.

The simplest WM tracking approach, known as streamline
tractography, propagates curves within the vector field of local fibre
orientations (Basser et al., 2000; Mori et al., 1999; Tench et al., 2002).
The streamline method provides deterministic connectivity informa-
tion, which is not always adequate given the noisy nature of MRI
images and the existence of partial volume (Jones, 2003). Probabilistic
tractographymethods (Behrens et al., 2003; Friman et al., 2006; Jones,
2008; Lazar and Alexander, 2005; Parker et al., 2003) deal with these
problems by considering the uncertainty of orientation estimates in
the curve propagation. Streamlines are repeatedly generated, but in
each propagation step a fibre orientation sample is drawn randomly
from the orientation distribution. A spatial distribution of curves is
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then estimated from a seed voxel in a Monte Carlo fashion. The
fraction of streamlines that pass through a specific voxel is defined as
its index of connectivity to the seed. These techniques suffer from
reduced connectivity values with distance from the seed. Moreover,
generating many streamlines means long execution times, but is
necessary to obtain converged connectivities.

Alternatives to streamline-based approaches have been devel-
oped. Methods that simulate the diffusion equation or directly solve
Fick's second law in the image volume have been presented (Hage-
man et al., 2009; Hagmann et al., 2003; Kang et al., 2005; O'Donnell
et al., 2002). In (O'Donnell et al., 2002), the diffusion equation is
solved for a steady-state concentration of diffusing molecules using
diffusion tensor estimates. A connectivity index is assigned to each
path, reflecting the total flow along it. An extra viscosity term is
employed in (Hageman et al., 2009) representing the anisotropy and
spatial orientational coherence, slowing down propagation in isotro-
pic regions. The solution of the diffusion equation has been used to
evolve a front from a given seed in (Kang et al., 2005). Most likely
paths to the seed are determined in a backward fashion, using both
the front distance travelled and the fibre orientation of front voxels.
All these methods tackle limitations of streamline tractography, such
as fibre crossing and branching. However, solving a partial differential
equation using a finite element approach is computationally expen-
sive. Furthermore, it is not always straightforward to obtain a
connectivity map across the whole brain (Hageman et al., 2009;
Kang et al., 2005), and there might be a large number of model
parameters to set.

Towards the calculation of distributed connectivity maps, front
propagation approaches have been developed (Campbell et al., 2005;
Fletcher et al., 2007; Jackowski et al., 2005; Parker et al., 2002;
Staempfli et al., 2006; Tournier et al., 2003). Propagation speed values
are calculated between neighbouring voxels using the fibre orienta-
tions (Parker et al., 2002), whole-tensor information (Staempfli et al.,
2006), or Q-ball ODFs (Campbell et al., 2005). Based on these values, a
surface is evolved using the isotropic fast marching algorithm
(Sethian, 1996). The arrival times of the surface arrival can then be
used to define paths back to the seed. Features of the path (the
weakest link of the path for instance) can be used to assign a
connectivity index to every image voxel. In (Jackowski et al., 2005) the
anisotropic Lax–Friedrichs algorithm governs surface propagation,
while an empirical front evolution method is presented in (Tournier
et al., 2003). Front propagation seeded individually from two regions
of interest (ROIs) is utilized in (Fletcher et al., 2007) to study the
connectivity of the ROI pair.

In more recent tractography studies, a weighted graph represen-
tation of the image has been utilized (Iturria-Medina et al., 2007;
Sotiropoulos et al., 2008b; Sotiropoulos et al., In press; Zalesky, 2008).
Anatomical paths are identified by searching the image graph ex-
haustively, using either modified shortest-path algorithms (Iturria-
Medina et al., 2007; Zalesky, 2008) or fuzzy connectedness (Sotir-
opoulos et al., 2008b, In press). These methods, as well as most of the
front propagation methods, are inherently discrete in the orientation
and spatial fields. However, compared to the streamline-based
approaches and their probabilistic counterparts, they combine a)
converged indices of connectivity to a seed for all image voxels
(Iturria-Medina et al., 2007; Parker et al., 2002; Sotiropoulos et al., In
press), b) connectivities that do not drop systematically with the
distance from the seed (Iturria-Medina et al., 2007; Parker et al., 2002;
Sotiropoulos et al., In press), c) inherent ability to incorporate infor-
mation from other imagingmodalities (Iturria-Medina et al., 2007), d)
inherent ability to deal with fibre branching in a single-pass execution
(Iturria-Medina et al., 2007; Parker et al., 2002; Sotiropoulos et al.,
2008b) and e) relatively short execution times (Parker et al., 2002;
Sotiropoulos et al., In press).

Despite the potential of such methods, only a few studies that
utilize Q-ball imaging and non-streamline tractography exist

(Campbell et al., 2005; Iturria-Medina et al., 2007). Propagation in
each step is determined using the whole Q-ball ODF, and in crossing
regions connections can be distributed equally towards all crossing
directions, regardless of the path propagated so far. Therefore,
anatomically unlikely connections may be identified. In this paper,
we discuss this limitation and present a new graph-based tracto-
graphy algorithm to deal more appropriately with crossing regions.
The algorithm takes into account multiple fibre populations within a
voxel, when partial volume exists, by treating the image as a
multigraph. It is then possible to distribute the connectivities in a
weighted manner, with the most appropriate fibre from the popu-
lation obtaining the highest weight. Our aim is thus to reduce the
connection strengths of paths from a seed that are less anatomically
plausible, without using exclusion/inclusion ROIs that require some
prior knowledge. We present results on simulated data as well as on a
group of healthy human subjects and perform quantitative compar-
isons with both Q-ball based front evolution tractography (Campbell
et al., 2005) and the recent graph-based tractography (Iturria-Medina
et al., 2007). This work has been previously presented in a preliminary
form (Sotiropoulos et al., 2009a, 2009b).

Methods

Brain tractography using graph theory

An image can be considered as a non-directed weighted graph
G=[V,A], with V being the set of graph nodes and A the set of graph
arcs. Each voxel i in the image is a graph node and a neighbourhood
system is chosen to define the set of neighbours Fi

Neigh of i. Arcs, a,
exist between neighbouring voxels andweights,w∈R, are assigned to
each arc reflecting both diffusivity and structural information of
the connecting voxels. According to (Iturria-Medina et al., 2007) the
weight of the arc between two neighbours i and j is symmetric and
defined as:

w a i; jð Þ½ �uwij = wji = Pmat ið Þ � Pmat jð Þ � PDiff i; r→ij

� �
+ Pdiff j; r→ji

� �h i
:

ð1Þ

The term Pmat(i) represents the probability of voxel i belonging to a
specific tissue type. It can be computed by performing probabilistic
tissue segmentation on structural images. PDiff i; r→ij

� �
is a pseudo-

probability term of observing diffusion from i along the direction r→ij

that connects the centres of i and j. It can be computed by integrating
the diffusion ODF over a solid angleω around the vector r→ij . The angle
ω is determined by the neighbourhood system employed, i.e. the
number of arcs arising from a node (for a 3×3×3 neighbourhood,
ω=4π/26). Then:

PDiff i; r→ij

� �
=

1
Z

Z
ω

ODF i; r→
� �
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Z

XQ
q=1

ODF i; r→q

� �
� ΔSq; ð2Þ

where the integral is approximated by a sum of ODF terms evaluated
at Q points r→q contained in the solid angle cone and obtained from an
icosahedral tessellation. The normalization constant Z ensures that
the maximum value of the set fPDiff ði; r→ijÞ; jaFNeighi g is 0.5. Using the
above definitions the arc weights are w∈[0,1]. Note that in (Zalesky,
2008), the weights are defined by integrating the Bayesian posterior
probability of fibre orientation.

Given the weights, paths can be defined in the image graph as
chains of neighbouring voxels. The strength M of a path C that
comprises of X nodes i1, i2, …iX or equivalently of X−1 arcs a(i1,i2), a
(i2,i3),…a(iX−1,iX) is given by:

MCuMi1 N ix = Mix N i1 = wi1i2 �wi2i3 � N wix− 1ix : ð3Þ
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