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such as the effective strength of synaptic connections among neuronal populations and their context-
dependent modulation. DCM is increasingly used in the analysis of a wide range of neuroimaging and
electrophysiological data. Given the relative complexity of DCM, compared to conventional analysis
techniques, a good knowledge of its theoretical foundations is needed to avoid pitfalls in its application and
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Effective connectivity interpretation of results. By providing good practice recommendations for DCM, in the form of ten simple
DCM rules, we hope that this article serves as a helpful tutorial for the growing community of DCM users.
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Introduction

Over the last two decades, neuroimaging analyses have become

. . ) progressively refined and sophisticated. For example, there has been a
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6344907, to whole-brain analyses; from classical frequentist statistics to
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mechanistic models of brain function. A representative of the latter is
dynamic causal modeling (DCM), a generic approach for inferring
hidden (unobserved) neuronal states from measured brain activity.
DCM was introduced in 2003 for fMRI data (Friston et al., 2003) and
made available as open-source software within the Statistical
Parametric Mapping (SPM) software. The mathematical basis and
implementation of DCM for fMRI have since been refined and
extended repeatedly (Friston et al., 2007; Kiebel et al., 2007,
Marreiros et al., 2008; Stephan et al., 2008, 2007c). Dynamic causal
models (DCMs)! have also been implemented for a range of
measurement techniques other than fMRI, including electroenceph-
alography (EEG), magnetoencephalography (MEG), and local field
potentials (LFPs) obtained from invasive recordings in humans or
animals, both in the time domain (Daunizeau et al., 2009b; David et
al., 2006; Kiebel et al., 2006) and frequency domain (Chen et al., 2008;
Moran et al.,, 2007, 2008, 2009; Penny et al., 2009).

DCMs are generative models of brain responses, which provide
posterior estimates of neurobiologically interpretable quantities such
as the effective strength of synaptic connections among neuronal
populations and their context-dependent modulation. They are
defined by five key features. First, DCMs are dynamic, using (linear
or nonlinear) differential equations for describing (hidden) neuronal
dynamics. Second, they are causal in the sense of control theory, that s,
they describe how dynamics in one neuronal population cause
dynamics in another and how these interactions are modulated by
experimental manipulations or endogenous brain activity. Third,
DCMs strive for neurophysiological interpretability. Fourth, they use
a biophysically motivated and parameterized forward model to link
the modeled neuronal dynamics to specific features of measured data
(for example, regional hemodynamic time series in fMRI or spectral
densities of electrophysiological data). Fifth, DCMs are Bayesian in all
aspects. Each parameter is constrained by a prior distribution, which
reflects empirical knowledge about the range of possible parameter
values, principled considerations (e.g., certain parameters cannot have
negative values) or a conservative attitude (e.g., “shrinkage” priors
that express the assumption that coupling parameters are zero).
Furthermore, Bayesian inversion not only provides posterior densities
for each model parameter but also yields an approximation to the log
model evidence, which is used to compare alternative DCMs of the
same data.

Since their introduction in 2003, DCMs have gradually become
part of mainstream neuroimaging analysis techniques. At the time of
submitting this article (September 2009), the database PubMed listed
more than 100 published papers on DCM. Its applications have
concerned a wide range of domains in cognitive neuroscience,
including language (Allen et al., 2008; Bitan et al., 2005; Leff et al.,
2008; Noppeney et al., 2008; Schofield et al., 2009), motor processes
(Eickhoff et al., 2005; Grefkes et al., 2008; Grol et al., 2007), vision and
visual attention (Fairhall and Ishai, 2007; Haynes et al., 2005; Mechelli
et al, 2003; Sonty et al., 2007), memory (Smith et al., 2006),
perceptual decision making (Stephan et al., 2007b; Summerfield et
al., 2006; Summerfield and Koechlin, 2008), and learning (den Ouden
et al.,, 2009; Garrido et al., 2008, 2009). Given the relative complexity
of DCM, compared to conventional analyses, many colleagues in the
neuroimaging community have expressed an interest in a tutorial-like
guide that addresses some of the most common questions about the
theoretical foundations and empirical applications of DCM. This article
represents an attempt to provide such a tutorial. It follows a recent
tradition in the neuroimaging literature, inspired by the popular “10
simple rules” series in PLoS Computational Biology (Bourne, 2005),
which has led to tutorial papers on, for example, voxel-based
morphometry (Ridgway et al., 2008) and on reporting results from
mass-univariate analyses (Poldrack et al., 2008).

! We use the acronym DCM both to refer to the general approach (dynamic causal
modeling) and to refer to the instantiation of a specific dynamic causal model.

In this article, we provide some generic “good practice” recommen-
dations that address key conceptual and methodological issues in
applying DCM to fMRI, EEG, MEG, or LFP measurements. Omitting any
equations, we have tried to keep these recommendations as straight-
forward as possible. The suggestions made in this article should not be
mistaken as dogmatic rules; instead, they are meant to provide
guidelines for those users who are new to dynamic system theory,
Bayesian statistics, and model selection procedures. Furthermore, some
of the points below, such as the section on causality, are not concrete
rules but outline the conceptual foundations of DCM. We anticipate that
some of these guidelines and their underlying concepts may change
over the forthcoming years, as both the theoretical foundations as well
as the implementation of DCMs are progressively refined.

Know what is “causal” about dynamic causal models

Causality in DCM is based on control theory (Friston, 2009): causal
interactions among hidden state variables® (e.g., specific aspects of
neuronal population activity) are expressed by differential equations,
which describe (i) how the present state of one neuronal population
causes dynamics (i.e., rate of change) in another via synaptic connections
and (ii) how these interactions change under the influence of external
perturbations (i.e., experimental manipulations) or endogenous brain
activity. The differential equations endow the system with memory such
that future states are influenced by current states; the coupling
parameters (rate constants) determine the speed of these influences.
The ensuing coupling is influenced by where and when the system is
subject to external perturbations; i.e., sensory inputs driving activity in
specific neuronal populations or modulatory inputs that render the
strength of coupling context-sensitive. In other words, causality in DCM
does not only rely on temporal precedence but also takes into account
when and where the system is perturbed by external influences.

An equivalent perspective is to interpret the state equation of a
given DCM as encoding a particular causal structure-function
relationship (Stephan, 2004). This is because the state equation of a
given DCM prescribes explicitly how system dynamics arises from
system structure: it specifies formally how neuronal state changes,
induced by external inputs, propagate both in space (i.e., according to
the system's connectivity structure) and in time (i.e., how current
states influence future states). Therefore, changing the pattern of
external inputs or the connectivity structure in a given DCM leads to
different predictions about the spatiotemporal pattern of measured
system responses. By simulating data from models with specified
causal mechanismes, it is straightforward to assess whether, for a given
level of observation noise, DCM is capable of correctly inferring these
mechanisms. This has been done using both the same neuronal
equations as in DCM (e.g., Stephan et al., 2008) and using
independently designed large-scale biophysical models of spiking
neurons (Lee et al., 2006). Perhaps even more convincingly, several
animal studies using independent techniques such as invasive
recordings and microdialysis demonstrated that DCM can successfully
infer neuronal processes from BOLD responses and field potentials,
respectively (David et al., 2008; Moran et al., 2008).

Critically, the hidden neuronal states give rise to noisy observa-
tions through a forward mapping (e.g., neurovascular coupling in
fMRI). This transform is crucial for inferring causal interactions,
particularly when it is nonlinear and may differ across brain regions,
as is the case in fMRI (David et al., 2008; Stephan et al., 2004).
Therefore, in contrast to Granger causality (Granger, 1969), causality
in DCM does not describe interactions among the observations
themselves. Instead, DCM aims to infer interactions among hidden
neuronal states that cause noisy observations through a (possibly
nonlinear and spatially variable) mapping.

2 The term “hidden state variables” refers to time-varying properties of systems that
cannot be observed directly.
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