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This research describes a new Bayesian spatiotemporal model to analyse block-design BOLD fMRI studies. In
the temporal dimension, we parameterise the hemodynamic response function's (HRF) shape with a
potential increase of signal and a subsequent exponential decay. In the spatial dimension, we use Gaussian
Markov random fields (GMRF) priors on activation characteristics parameters (location and magnitude) that
embody our prior knowledge that evoked responses are spatially contiguous and locally homogeneous. The
result is a spatiotemporal model with a small number of parameters, all of them interpretable. Simulations
from the model are performed in order to ascertain the performance of the sampling scheme and the ability
of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise
ratio. Results are shown on synthetic data and on real data from a block-design fMRI experiment.

© 2009 Elsevier Inc. All rights reserved.

Introduction

This research focuses on determining which parts of the brain
show activation in response to a stimulus in BOLD fMRI data. By
observing the relation between a stimulus paradigm (in an experi-
ment) and the hemodynamic response based on BOLD effect (Ogawa
et al., 1990), fMRI provides ameasure of brain activation. In particular,
we consider a block-design fMRI study (Lazar 2008), in which scans
are acquired under two different conditions, alternating periods when
the stimulus is on with those when the stimulus is off.

Inference about brain activity in fMRI data is commonly addressed
through the General Linear Model (GLM) analysis, introduced by
Friston et al. (1995), in which a linear dependency of the BOLD signal
and the hemodynamic response function (HRF) is assumed.

Generally, the stimulus pattern is fit simply as a box-shaped wave,
slightly delayed, in order to account for the lapse of time between the
stimulus onset and the arrival of the blood to the activated area. This
box-shaped wave is convolved with a HRF template for which several
kernels have been considered, including Poisson (Friston et al., 1994),
Gaussian (Friston et al., 1995) and gamma (Lange and Zeger 1997;
Boynton et al., 1996). The convolution approach is attractive for its
simplicity. However, it imposes restrictions to the model, e.g. it forces
antisymmetry and monotonicity on each half cycle, as mentioned by
Crellin, Hastie and Johnstone in the published discussions of Lange
and Zeger (1997).

The result of this analysis is a statistical parametric map (SPM), i.e.
a T, F or Z estimate for each voxel. The next step is to threshold this
SPM (leading to a multiple comparisons problem), in order to decide,
at a given level of significance, which parts of the brain are activated.
The p-value used to make inference represents the probability of
obtaining a result at least as extreme as the observed data given the
truth of the null hypothesis of no activation and it is sometimes
misinterpreted as the likelihood of activity presence. Furthermore, in
this approach it is not possible to infer that no activation occurs
(Friston et al., 2002; de Pasquale et al., 2008).

The spatial aspect of the hemodynamic response is usually taken
into account by spatially smoothing the data with a fixed Gaussian
kernel as a pre-processing step. This helps to improve the signal to
noise ratio. However, smoothing the data can result in drawbacks: too
much smoothing will blur activations, while too little will leave
unnecessary noise in the data (Flandin and Penny, 2007). As
univariate methods do not take into account the spatial structure on
data, several approaches have been proposed in the literature to
model spatial dependencies (Bowman et al., 2008; Flandin and Penny,
2007; Harrison et al., 2007; Penny et al., 2005; Hartvig and Jensen,
2000; Gossl et al., 1999).

Multivariate methods provide an alternative to individual analysis
of voxels, reducing the whole spatiotemporal data set into certain
multivariate components with similar temporal characteristics, see
for example the reference book onmultivariate methods, Mardia et al.
(1979). Multivariate techniques applied to the analysis of fMRI data
include principal component analysis (Friston, 1994; Sjöstrand et al.,
2006), independent component analysis (Beckmann and Smith, 2004;
Esposito et al., 2003; McKeown et al., 2003; Calhoun et al., 2001; Porill
et al., 1999) and cluster analysis (Goutte et al., 1999). Interpretation of
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results must be treated with care when using these techniques, as
there is a high risk of data overfitting.

The fMRI data analysis involves the spatiotemporal relationship
between a stimulus or cognitive task and the cerebral response
measured with fMRI. In spite of the obvious spatiotemporal nature of
data, there are few spatiotemporal models, see for example, Bowman
(2007), Penny et al. (2005), Katanoda et al. (2002) andWoolrich et al.
(2004a). Although all these models are based on convolution, the four
of them present a different modelisation of the spatiotemporal
correlation structure between voxels. Bowman (2007) incorporates
a functionally defined distance metric into a parametric structure for
spatial correlations within a ROI (with the difficulty of choosing the
ROI and the functional distance between voxels in it) and includes
temporal correlations between scans. Penny et al. (2005) propose a
fully Bayesian model with spatial priors defined over regression
coefficients of a GLM, using Gaussian Markov random fields (GMRF),
and the errors are modelled as an autoregressive process. Katanoda et
al. (2002) propose a spatiotemporal regression model for each voxel
that involves the time series of the neighbouring voxels together with
its own. Woolrich et al. (2004a) present a fully Bayesian approach,
incorporating spatiotemporal noise modelling. A general problem of
spatiotemporal models is the large number of parameters and, as a
consequence, the great computational burden.

The Bayesian paradigm provides an appropriate framework for
making inference using complex models and to overcome the
multiple comparisons problem. It also constitutes a natural but
rigorous theory for combining prior and experimental information.
Most Bayesian approaches to the modelling of fMRI data use GMRF as
prior distributions, in order to account for the spatial structure present
in the data, e.g. Gossl et al. (2001) use GMRF to spatially regularise
regression coefficients and Woolrich et al. (2004b) to spatially
regularise AR coefficients. Moreover, several choices of the precision
matrix of the GMRF prior on regression coefficients of a GLM-AR
model have been considered in the Bayesian literature, these include
uninformative priors (Penny et al., 2003), global-shrinkage priors
(Friston and Penny, 2003) and Laplacian priors (Penny et al., 2005)
among others. An interesting comparison of these priors can also be
found in Penny et al. (2005).

The package SPM is a set of tools created by Frackowiak et al.
(2004), and described in Friston et al. (2006), for the implementation
of statistical analysis of parametric maps, andmultivariate techniques,
based on GLM. Although no recognised standard has yet been set, SPM
has become a standard as the most complete package available.

In his PhD. thesis, Kornak (2000) proposed a two-stage model to
analyse fMRI data. In the first stage, he summarises the temporal
information present in the data at individual voxels and forms voxel
maps for each parameter, using least squares estimation. He
incorporates these maps in the second stage using GMRF as prior
distributions for the parameters in a Bayesian spatial model. A fully
Bayesian extension of Kornak's work can be seen in Quirós et al.
(2006).

In this paper, we propose a new Bayesian spatiotemporal model to
determine active areas into the brain by merging the two stages of the
model first proposed by Kornak (2000) and extended by Quirós et al.
(2006). In the temporal dimension, we parameterise the HRF shape
with a potential increase of signal and a subsequent exponential decay.
In addition, the delay of the HRF is not fixed in advance but modelled as
an unknown parameter. In the spatial dimension, we use GMRF priors
on activation characteristics parameters (location and magnitude) that
embody our prior knowledge that evoked responses are spatially
contiguous and locally homogeneous. In this way, smoothing is
included as a part of the model and it is not left to a pre-processing
step. Despite being spatiotemporal, the proposed model has a small
number of parameters and all of them are interpretable.

The paper is arranged as follows: in the following section, we state
the model and prior distributions of the parameters in the model. We

examine the results obtained by applying the model to simulations,
synthetic data and to real data in the results section. This is followed
by the discussion and conclusions. The posterior distribution and the
details regarding MCMC methods used to sample from the posterior
distribution are included in two appendices to the document.

Materials and methods

The model

In this work we consider a block-design fMRI study, where
stimulation blocks (in which the stimulus is on during several
seconds) are alternated with resting blocks (in which the stimulus
is off). Two consecutive blocks (one with stimulus and one without)
are called a cycle. Let C be the number of cycles in the experiment, T
the number of images in each cycle and N×M the dimension of each
image. Notice that this is a 2D approach (analysing axial slices) and
that half of the images in a cycle (T/2) are taken when the stimulus is
on and half, when the stimulus is off. So that the whole data of the
experiment may be given by

y = ys;τ;c : s = 1; N ;N × M; τ = 1; N ; T; c = 1; N ;C
n o

; ð1Þ

where ys,τ,c is the value of voxel s, in the image number τ of the cycle c
and where each cycle c is assumed to be identically distributed.

Our proposal to analyse fMRI data is the following model for
c=1,…,C:

yτ;c = k + aOhτ dð Þ + e1; efN 0;σ2
� �

ð2Þ

where ⊙ means element by element product and 1 is a N×M-matrix
of ones.

Field k={ks : s=1,…, N×M} represents the baseline level for each
voxel s.

Field a={as : s=1,…, N×M} defines the spatial variation of brain
activity by classifying voxels as active or non-active and by providing
the magnitude of the response in active voxels. This is achieved by
defining

a = zOx; ð3Þ

where, field z={zs : s=1,…, N×M} is a binary random field, defining
the presence (1) or absence (0) of activity (in practice, z-field is
defined by thresholding a continuous field, w, i.e., zs = I ws N 0f g,
and it provides a summary of location of activity) and where field
x={xs : s=1,…, N×M} is a continuous random field that models
the spatially varying response level of activated regions.

For active voxels, we parameterise hτ (d) for τ=1,…,T, with the
shape of a Poisson probability density function with mean d, that is, a
potential increase of signal and a subsequent exponential decay,

hτ dsð Þ = e−dsdτ − 1
s

τ − 1ð Þ! ð4Þ

for each voxel s. Consequently, parameter d can be interpreted as the
delay of the response with respect to the stimulus onset. In
conclusion, when a voxel is active (zs=1), the data are modelled as
the sum of the baseline ks and the expression xs

e− ds dτ − 1
s

τ − 1ð Þ! , which
parameterises the hemodynamic response for that voxel. Otherwise, if
the voxel s is non-active (zs=0), the data are only modelled by ks.

Prior distributions

Under the Bayesian framework, it is necessary to specify prior
distributions for the image of interest, in this case, the x-field and the
generator field of z, w. GMRF have been widely used for this purpose
(for instance, seeWinkler (2003)) as they are able to incorporate prior
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