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The purpose of this study is the classification of high angular resolution diffusion imaging (HARDI) in vivo
data using a model-free approach. This is achieved by using a Support Vector Machine (SVM) algorithm
taken from the field of supervised statistical learning. Six classes of image components are determined: grey
matter, parallel neuronal fibre bundles in white matter, crossing neuronal fibre bundles in white matter,
partial volume between white and grey matter, background noise and cerebrospinal fluid. The SVM requires
properties derived from the data as input, the so called feature vector, which should be rotation invariant. For
our application we derive such a description from the spherical harmonic decomposition of the HARDI signal.
With this information the SVM is trained in order to find the function for separating the classes. The SVM is
systematically tested with simulated data and then applied to six in vivo data sets. This new approach is data-
driven and enables fully automatic HARDI data segmentation without employing a T1 MPRAGE scan and
subjective expert intervention. This was demonstrated on five test in vivo data sets giving robust results. The
segmentation results could be used as a priori knowledge for increasing the performance of fibre tracking as
well as for other clinical and diagnostic applications of diffusion weighted imaging (DWI).

© 2009 Elsevier Inc. All rights reserved.

Introduction

Diffusion weighted MRI (DWI) and in particular measurements of
diffusion anisotropy provides biologically relevant information about
the tissue microstructure. A special focus of interest for research and
clinical application of DWI is the investigation of the brain white
matter (WM) structure. Such measurements allow the reconstruc-
tion of the neuronal fibre architecture in WM, the visualisation of
fibre tracks and the examination of morphological connectivity
between different cortical and sub-cortical regions. Data acquisition
is typically performed using the so called High Angular Resolution
Diffusion Imaging (HARDI) approach introduced by Tuch et al.
(1999). This method consists of the application of diffusion encoding
(DE) gradients in a large number of non-collinear directions. With,
for instance, 64 DE gradient directions the spatially non-Gaussian
diffusion behaviour of water in white matter regions with hetero-
geneous fibre orientations can be resolved. Therefore HARDI evolved
to be the basis for many post-processing approaches for resolving the
spatial structure of neuronal fibre bundles in WM. Specifically, it
would be advantageous to distinguish between parallel (PF) and
crossing (CF) fibre bundles.

The existing methods for inferring multiple fibre bundle popula-
tions from diffusion data can be classified into two groups (Behrens
et al., 2007): model-dependent methods for the estimation of the

underlying diffusion profile or model-free methods based on the
inherent structure of the diffusion profile itself. The generic model-
based method is Diffusion Tensor Imaging (DTI) (Basser et al., 1994),
which was the first method used as a basis for the reconstruction of
neuronal fibres, i.e. fibre tracking. The diffusion tensor (DT) repre-
sents the apparent diffusion coefficient (ADC) and can be explained
as the averaging of all water spins in a voxel when applying DE
gradients in several spatial directions. From the DT, anisotropy mea-
sures, such as the fractional anisotropy (FA), can be derived. The main
drawback of DTI is that it can only reveal a single fibre orientation in
each voxel and fails in voxels containing complex tissue architecture
with more than one significant fibre orientation. One segmentation
procedure based on the DT model applies a supervised clustering
procedure with a collection of DTI metrics in regions of interests for
the segmentation of GM, WM and CSF (Hasan and Narayana, 2006).
In this method, the contrast of FA maps between CSF, WM and GM
was used, based on the “principal diffusivity indices”. The CSF was
segmented using its high diffusivity and low anisotropy properties.
However, since this method is based on DTI, no further classification
of the WM subclasses PF and CF was possible.

An approach that combines model-dependent and model-free
methods for the differentiation of parallel and crossing fibre bundles
based on HARDI and DTI was described by Kreher et al., (2005). In this
approach a multi-diffusion tensor model was introduced, which
contains one anisotropic and one isotropic diffusion tensor in order to
model the tissue structures. In each voxel it is decided separately
which of the two models is more appropriate for describing the
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underlying diffusion and therefore more suitable for the detection of
crossing fibre bundles.

The first model-free method which used spherical harmonics for
the description of the diffusion profile acquired with HARDI data
was reported by Frank (2002). Spherical harmonics are functions
similar to Fourier expansions, but described in spherical polar coor-
dinates (polar angle θ and the azimuth angle φ). Every function
that takes as its arguments the directions θ and φ can be expanded
into spherical harmonics. A function of the signal S can be described
with spherical harmonics as follows (Webster and Szego, 1930;
Arfken and Weber, 1985):

S θ;uð Þ =
X∞
n=0

X+ n

m= −n

amn Y
m
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where Y is the spherical harmonic of order n (all integer n≥0), andm
the azimuthal separation constant or degree (all integer m, |m|≤n).
The coefficients anm are expressed as:
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with Y⁎ being the complex conjugate of Y. The expansion of Eq. (1) can
be terminated at some n. The higher the order n themore complex the
deviation from the spherical shape (n=0), which can be described.
Then, however, a necessary condition of the sampling theorem
requires that more directions be measured (see section Theory and
methods and Yeo, 2005).

In Frank's (2002) approach isotropic diffusion occurring in water
or CSF is described by zero order spherical harmonics, diffusion along
parallel fibres by second order spherical harmonics, and diffusion in
the multiple fibre case is approximated by the fourth order. The odd
orders describe asymmetric components and therefore represent
imaging artefacts and noise. By using a high order versus low order
ratio of the spherical harmonic coefficients, Frank presented a method
for differentiation between PF and CF, which is however subject to
limitations. The results could include possible misclassification, espe-
cially for WM regions containing multiple crossings. These regions
appeared like isotropic voxels similar to GM voxels. Differentiation
between GM, CSF and background noise was thus not feasible with
exclusive use of the spherical harmonic description. Descoteaux et al.
(2006) extended the model in order to distinguish between isotropic,
one-fibre and multi-fibre diffusion. This procedure is very promising,
but automatic full image segmentation was not possible, since CF was
still often misclassified as GM or noise. Alexander et al. (2002)
described a method for the modelling and detection of non-Gaussian
diffusion profiles also using spherical harmonics, but up to an order of
eight, providing a sequence of models of increasing complexity. A
statistical test was performed in order to find the simplest of the
models which adequately described the data. This method was
applied in a human experiment and seemed to classify isotropic
(GM) and anisotropic Gaussian (WM) regions correctly as order zero
and order two, respectively. It was found that on average five percent
of profiles in voxels within the brain were classified as order four or
above (anisotropic non-Gaussian), which, from our understanding of
anatomy, would be too low a percentage. Themethodwas validated by
characterising its performance using synthetic data. It was not
described how accurately GM was differentiated from CF.

Behrens et al. (2007) reviewed several recent model-free techni-
ques. In the data shown (HARDI data in 60 DE directions) a third fibre
bundle orientation could not be detected. The authors supposed that
a detection of more than two orientations would be possible if
more diffusion directions were to be acquired at a higher b-value.
Simulations, which were performed in (Behrens et al. 2007) sug-
gest that in order to resolve a three fibre bundle orthogonal system

robustly, data with b-values above 4000 s/mm2 has to be acquired. As
will be shownbelow in the Theory andmethods section, it is necessary
to acquire more than 60 DE directions in order to fulfill the sampling
theorem for spherical harmonics of order four and above (Yeo, 2005).
In addition, the review by Alexander (2005) showed with noisy data
synthesised from isotropic test functions that most methods generate
spurious angular structure. This may explain why strong angular
structures are incorrectly detected even in many GM and CSF voxels.

However, for a realistic tissue description, the existing models are
rather complex and often include ill-defined parameters not
adequately supported by the measurement data. All presented
methods, including the model-free methods, showed that full image
segmentation of microstructures and of image background was not
possible. A differentiation between voxels containing PF or CF, or the
differentiation between GM, CF and background noise is difficult,
since this information is usually derived from some measure of
diffusion anisotropy. Many publications outline methods which show
potential for performing this differentiation, but so far an evaluation
of their methods for fibre crossings has not been reported.

Based on the state-of-the-art described above we suggest a new
data-driven analysis of multi-directional diffusionweighted MRI data,
which may provide unique fingerprints for different types of tissue
and image components. In addition to using a model-free approach,
we employ methods developed in the field of pattern recognition. In
the present case we attempt classification of six different classes: grey
matter (GM), the two white matter (WM) subclasses: CF and PF,
partial volume (a mixture between GM and WM), as well as cere-
brospinal fluid (CSF), background noise and image artefacts (hereafter
referred to as noise). First, the underlying diffusion profile per voxel of
the HARDI data is described using the rotational invariants of the
spherical harmonic decomposition. Then a Support Vector Machine
(SVM), a computer algorithm for statistical learningwhich has already
demonstrated robust performance in other applications (Nattkemper
2004; Quddus et al., 2005) is used for classification (Cristianini and
John, 2000). The SVM is trained with the labelled image features in
order to find the function for separating the classes. Afterwards the
SVM is systematically tested with simulated data and then applied to
six in vivo data sets.

Theory and methods

The support vector machine as a classifier

The field of pattern recognition is a sub-topic of machine learning.
It is either based on a priori knowledge or on statistical information
extracted from the patterns, meaning that some pattern in raw data is
classified by performing some action based on some property or
feature of the data. Therefore, pattern recognition can be considered
as a form of data classification.

A complete pattern recognition system consists of a sensor that
gathers the observations to be classified, a feature extraction mecha-
nism, which computes numeric information from the observations,
and a classifier, which does the actual job of classifying observations,
relying on the extracted features. One classification method is
supervised learning, which is a machine learning technique for
creating a function from training data. The training data consists of
pairs of input data (the feature vectors) and desired outputs (the
labels). The output of the function can predict a class label of the input
data. The task of the supervised learner is to predict the value of the
function for input data after having seen a number of training
examples. This means that for correct separation between the classes
the learner has to be able to generalise from the presented data to
unseen situations or data (Burges, 1998).

An example of a classifier is the support vector machine (SVM),
which was introduced by Cortes and Vapnik (1995) and was found to
yield good results for the problem presented in this paper. The SVM
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