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When modelling FMRI and other MRI time-series data, a Bayesian approach based on adaptive spatial
smoothness priors is a compelling alternative to using a standard generalized linear model (GLM) on
presmoothed data. Another benefit of the Bayesian approach is that biophysical prior information can be
incorporated in a principled manner; however, this requirement for a fixed non-spatial prior on a parameter
would normally preclude using spatial regularization on that same parameter. We have developed a
Gaussian-process-based prior to apply adaptive spatial regularization while still ensuring that the fixed
biophysical prior is correctly applied on each voxel. A parameterized covariance matrix provides separate
control over the variance (the diagonal elements) and the between-voxel correlation (due to off-diagonal
elements). Analysis proceeds using evidence optimization (EO), with variational Bayes (VB) updates used for
some parameters. The method can also be applied to non-linear forward models by using a linear Taylor
expansion centred on the latest parameter estimates. Applying the method to FMRI with a constrained
haemodynamic response function (HRF) shape model shows improved fits in simulations, compared to using
either the non-spatial or spatial-smoothness prior alone. We also analyse multi-inversion arterial spin
labelling data using a non-linear perfusion model to estimate cerebral blood flow and bolus arrival time. By
combining both types of prior information, this new prior performs consistently well across a wider range of
situations than either prior alone, and provides better estimates when both types of prior information are
relevant.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Hierarchical Bayesian methods provide a flexible framework for
the analysis of functional MRI and other MRI time-series data (Penny
et al., 2003; Woolrich et al., 2006). In particular, the use of priors on
signal parameters provides a principled approach to incorporating
prior physical information into statistical inference (Friston, 2002). In
this paper the “signal parameters” are analogous to the regression
coefficients in (Penny et al., 2005), and we wish to infer their true
value at each voxel in the brain.

We consider two types of prior information in this paper: fixed
non-spatial priors and spatial priors. Fixed non-spatial priors provide
information on the plausible range of values a signal parameter could
have, often based on our prior biophysical understanding of the
underlying process. Since these are informative priors based on real a
priori knowledge, it is important that they be included in the model to
ensure that only sensible interpretations of the data are considered.
They are not to be confused with global shrinkage priors, which
provide regularization by automatically inferring the scale of each
signal parameter from the data.

Another type of prior, the spatial smoothness prior, explicitly
encodes the belief that the parameter values in one voxel should not
be dramatically different from those in its neighbours. It thereby
provides spatial regularization which is similar to spatial presmooth-
ing, but it is adaptive on each signal parameter separately (Penny et al.,
2005). If there is not enough information in the data to justify
additional spatial detail, then a simpler, smoother parameter image is
produced.

We are interested in applications inwhich a fixed biophysical prior
provides useful information during inference, but spatial regulariza-
tion is also desirable. There are many approaches in the literature for
combining different types of prior within a Bayesian framework. These
include many examples in neuroimaging applications:

• Model averaging, in which several independent models are
evaluated and the posteriors are averaged based on global model
evidence (Trujillo-Barreto et al., 2004). In the event that onemodel
has much higher evidence than the others, it will dominate the
posterior solution; otherwise the result is a weighted average of
the separate results.

• Mixture models, in which the prior's covariance matrix is the
weighted sum of several different types of covariancematrix, each
with adaptively determined parameters (Mattout et al., 2006). For
example, a signal parameter might have two sources of variance: a
spatially-smooth component and an additive non-spatial
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component. The varianceof each componentwould bedetermined
from the data.

• Hierarchical models, in which a hierarchy of signal parameters is
used, with each level having a generative model to predict the
level below it, and each level introducing its own type of additive
noise. This approach has been successfully used for the analysis
of MEG data (Trujillo-Barreto et al., 2008; Sato et al., 2004), for
example by having spatial regression coefficients, which predict
the noisy spatio-temporal electrical activity, which predicts the
noisy MEG data. The overall variance at the lowest level is
effectively a sum of different types of structured covariance
matrix, with the weights determined by the magnitude of the
“noise” added at each level.

Notably, none of these attempt to incorporate fixed biophysical prior
information as part of the inference. Instead, they use adaptive spatial
priors in addition to adaptive non-spatial priors as a way of modelling
different types of variance in the observed signal.

Our objective is different; we would like to ensure that a fixed
biophysical prior is respected, by conditioning the inference on the
prior knowledge that the signal parameters must remain near a
physically-plausible range of values. In technical terms, we want to
ensure that the marginal prior distribution in each voxel always
corresponds to the fixed biophysical prior.

One possible approach to this would be to use a wavelet
decomposition that describes the signal parameters using sparse
spatial basis functions Flandin and Penny (2007). In principle,
different priors could be applied at each level of the decomposition.
By applying the biophysical prior to the coarsest level instead of ARD,
it may be possible to achieve approximate enforcement of the
biophysical prior. However, to the best of our knowledge this has
not yet been attempted.

Our approach is based on Gaussian process priors (GPPs), which
provide a flexible approach to spatial regularization. In particular, we
use the same GPP form previously used in neuroimaging for analysing
stimulus–response functions in neural recordings (Sahani and Linden,
2003) and for spatiotemporal analysis using functional distance
metrics (Bowman, 2007). In these papers it is used to provide both
spatial regularization and a global shrinkage prior. However, by fixing
the global shrinkage parameter we can instead use the GPP to enforce
the informative biophysical prior while also providing adaptive spatial
regularization. The covariance matrix is parameterized to provide
separate control over the variance (the diagonal elements) and the
between-voxel correlation (due to off-diagonal elements). The mean
and variance are set to match the fixed non-spatial prior, while the
correlation between voxels drops exponentially with distance and is
controlled by an adaptive correlation–distance parameter. This
provides adaptive spatial regularization while ensuring the non-
spatial prior still applies to each voxel.

This combined prior can be used as a drop-in replacement for the
spatial smoothness prior in the hierarchical FMRI model developed by
Penny et al. (2005). That paper used variational Bayes (VB) for
inference, which is an iterative approach that provides fully
probabilistic results. We use a hybrid approach for inference on the
combined prior: VB estimates are used for inference on the noise
parameters, while an empirical Bayes technique called evidence
optimization (EO) is used to estimate the Gaussian process hyper-
parameters. EO also provides probabilistic estimates of the signal
parameters, which are equivalent to the regression coefficients in a
generalized linear model (GLM).

We also extend this technique to work with non-linear modelling
problems. Non-linear time-series models are beneficial in neuroima-
ging applications such as multi-contrast FMRI (Woolrich et al., 2006).
This is particularly useful because parameters in non-linear models
usually have real biophysical meanings, and as a result often have
informative priors associated with them. To achieve this we adapt our

previously published approaches for using VB with non-linear time-
series models (Chappell et al., 2009).

We evaluate our technique using two applications in brain MRI.
Both use non-linear forwardmodels and have informative non-spatial
priors on some parameters. In each application, we compare using the
combined prior against two alternatives: using the non-spatial
information only, or using the spatial smoothness prior that ignores
the informative non-spatial prior.

The first of these applications is FMRI analysis using constrained
linear basis sets. The non-spatial prior allows the haemodynamic
response function (HRF) to undergo reasonable variations in its shape
in order to fit the data, while avoiding unrealistic HRF shapes
(Woolrich et al., 2004). The second application is to multi-inversion-
time ASL, where we estimate blood flow and bolus arrival time from
resting-state data by fitting an intrinsically non-linear model of
cerebral perfusion.

Theory

Voxelwise models of MRI time-series

Four-dimensional MRI data is usually analysed as a collection of V
separate time series (one for each brain voxel). A generative model g(·)
predicts the T×1 vector of time-series data yv in voxel v given a K×1
vector of parameter values wv in that voxel:

yv = g wvð Þ + ev ð1Þ

where ev is the additive noise in that voxel. The forwardmodel g could
be linear, as used in most previous work (Penny et al., 2003; Roberts
and Penny, 2002), but could also be a general non-linear function
(Friston, 2002; Woolrich et al., 2006).

In addition to the forward model parameters wv, each voxel has
noise parameters. We use the standard AR(1) autoregressive noise
model, which is commonly used for FMRI analysis (Woolrich et al.,
2001; Penny et al., 2003):

e tð Þ
v = ave

t−1ð Þ
v + e tð Þ

v ; e
tð Þ
v eN 0;/−1

v

� �
: ð2Þ

with noise precision (inverse variance) ϕv and AR parameter av. This
can be condensed into a matrix form:

RvevfN 0;/−1
v I

� �
ð3Þ

where I is the (T−1)×(T−1) identity matrix and the Rv is a T−1×T
bidiagonal matrix we call the “noise-whitening matrix”:

Rv =

1 −av
1 −av

O O
1 −av

2664
3775 ð4Þ

This is equivalent to the “embedded” form of AR used by Penny et al.
(2003), but this matrix formulation is more convenient for our
purposes. For awhite noise model, simply use Rv= I, the identity matrix.

The forward model and noise model define the likelihood for
voxel v:

P yvjwv;/v; avð Þ =N Rvyv;Rvg wvð Þ;/−1
v I

� �
: ð5Þ

Hierarchical models for fMRI time-series

Hierarchical Bayesian models provide a way to perform inferences
on each voxel while maintaining some higher-level priors; these can
help to pool information and provide regularization. In the hierarchical
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