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BOLD response analysis by iterated local multigrid priors
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We present a non parametric Bayesian multiscale method to character-
ize the Hemodynamic Response HR as function of time. This is done by
extending and adapting the Multigrid Priors (MGP) method proposed
in (S.D.R. Amaral, S.R. Rabbani, N. Caticha, Multigrid prior for a
Bayesian approach to fMRI, Neurolmage 23 (2004) 654-662; N.
Caticha, S.D.R. Amaral, S.R. Rabbani, Multigrid Priors for fMRI time
series analysis, AIP Conf. Proc. 735 (2004) 27-34). We choose an initial
HR model and apply the MGP method to assign a posterior probability
of activity for every pixel. This can be used to construct the map of
activity. But it can also be used to construct the posterior averaged time
series activity for different regions. This permits defining a new model
which is only data-dependent. Now in turn it can be used as the model
behind a new application of the MGP method to obtain another
posterior probability of activity. The method converges in just a few
iterations and is quite independent of the original HR model, as long as
it contains some information of the activity/rest state of the patient. We
apply this method of HR inference both to simulated and real data of
blocks and event-related experiments. Receiver operating characteristic
(ROC) curves are used to measure the number of errors with respect to
a few hyperparameters. We also study the deterioration of the results
for real data, under information loss. This is done by decreasing the
signal to noise ratio and also by decreasing the number of images
available for analysis and compare the robustness to other methods.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

The main effort in clinical and cognitive neuroscience using
functional magnetic resonance imaging (fMRI) (Belliveau et al.,
1992; Kwong et al., 1992; Ogawa et al., 1992) has focused most
intensely on the localization of brain activity using the Blood
Oxygenation Level-Dependent (BOLD) effect. Understanding
brain function requires information not only of the localization
of brain activity, but also of features that characterize this response
(Friston et al., 1998; Buxton et al., 2004).
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The translation of susceptibility into brain activity via 75
weighted imaging is not an altogether clear process. It involves
levels of blood oxygenation, regional characteristics of cerebral
blood flow and volume, glucose and oxygen metabolism, running
down to the level of neuronal activity. The MR signal carries,
through this long chain of relations, information about neuronal
activity. However, this coding occurs through an unknown and
nonlinear, hopefully reasonably stable and monotonic process that
depends on this activity. This information then bears, besides the
spatial localization of the activity, on the regional dynamics
governed by this function which is usually called the hemodynamic
response (HR), which depends on time due to the dynamical nature
of the neuronal activity. It has played a central role in under-
standing functional characterization of brain function (Buckner,
1998; Logothetis et al., 2001). Most analyzes model BOLD
activity based upon some standard HR. However, several works
showed that HRs widely vary from region to region, from task to
task, and from subject to subject (Aguirre et al., 1998; Miezin et
al., 2000; Handwerker et al., 2004).

These studies suggest that the activation results obtained using
a generic HR may be different from those obtained using local
hemodynamic responses. It can be case that HR significantly
changes across regions of activation. In this case, the use of region-
specific HRs may help to delineate more precisely the activated
areas.

In this paper, we introduce a non parametric method for BOLD
response analysis by iterated local multigrid priors (iMGP) a
Bayesian method that deals with the multiscale properties of the
problem. This is done by extending and adapting the Multigrid
Priors (MGP) method proposed by Amaral et al. (2004) and Caticha
et al. (2004). We choose an initial HR model which could be as
simple as an ON/OFF square function and apply the MGP method to
assign a posterior probability of activity to every pixel. This can be
used to identify regions of activity. But it can also be used to
construct the posterior averaged time series of activity for different
regions. This permits defining a new model which is only data-
dependent. Now in turn it can be used as the model behind a new
application of the MGP method to obtain another posterior
probability of activity, and so on in an iterative fashion. The method
converges in just a few iterations and very importantly, is quite
independent of the original HR model, as long as it contains some
information of the activity/rest state of the patient.
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We have applied our extended method to simulated as well as
experimental fMRI data sets. We quantify the performance of the
method, in a classical way, through receiver operating characteristic
(ROC) curves which characterize the sensitivity and specificity
relation. Different curves were obtained by choosing different
parametrizations in terms of different hyperparameters, such as
global prior probabilities, noise level, HF amplitude, the size of the
region over which the data set is spatially averaged over the posterior
of activity, or the iteration number. We also study the deterioration of
the results for real data, under information loss. This is done by
decreasing the signal to noise ratio and also by decreasing the
number of images available for analysis and compare the robustness
to Bayesian and Classical methods of the SPM2 software package.

Despite the fact that Bayesian methods strive to attain objectivity,
a wealth of different Bayesian methods have appeared in the
literature due to the fact that different practitioners choose to codify
prior information in different manners. In particular, the realization
that spatial dependencies should influence the prior has been used in
several studies (e.g. Gossl et al., 2001; Woolrich et al., 2004; Penny
etal., 2003; Selene da Rocha et al., 2004; Penny et al., 2005). There
is a variety of multiscale methods that can be borrowed from
different areas of analysis and physics. In particular, wavelet
decomposition (Turkheimer et al., 2000) has brought in an extension
of spatio-temporal Fourier analysis. Multigrid techniques, originally
designed to deal with multiscale phenomena described by partial
differential equations (Fedorenko, 1964), have been found useful to
accelerate Monte Carlo simulations (Goodman and Sokal, 1989).
While related, by the multiscale theme, these are different in
practical details, as are different from another relative, the
Renormalization Group (Swendsen, 1979). Our method, inspired
by multiscale analysis, as the Renormalization Group, technically
resembles more a multigrid type, since it avoids dealing with the
calculation of costly marginals. While the differences between these
multiscale theoretical tools are clear, the similarities and applic-
ability scopes have not yet been clearly determined. Maximum
Entropy methods have been shown to be very useful in dealing with
problems of Fourier inversion in the presence of noisy data and
reduced K-space information. It is tempting to speculate that in this
case Bayesian and the related method of Maximum Entropy, with a
multigrid flavor may be brought to complement wavelet methods.

The explosion of Bayesian applications in the last decades is
partly due to the fact that efficient Monte Carlo methods have
permitted integrating over large dimensional spaces. Therefore
many times Bayesian methods are feared for the heavy computa-
tional load they might imply. As we will show bellow, our method
does not need Monte Carlo integration over nuisance parameters or
equivalent mean field approximations and so it is very fast, taking
no more than 2 min per slice on a small personal computer.

Methods

In this section we explain how to infer the hemodynamic
response as a function of time. Since this is based on an iterated
extension of the Multigrid Grid Priors method, we now briefly
review it.

fMRI analysis by multigrid priors
The main idea behind the MGP algorithm (see Selene da Rocha

et al., 2004; Caticha et al., 2004 for details) stems from the fact that
a Bayesian hypothesis test gives better results the richer the prior

information used. A Bayesian approach must address two main
issues: the prior probability and the likelihood which is based on
the model of the physical effect and the knowledge about the noise
process that affects the data. Forgetting to model the prior, or just
choosing a uniform prior leads to the maximum likelihood method.
In Amaral et al. (2004), we showed, in a realistic numerical
simulations, that the maximum likelihood-based hypothesis test
had 300% larger errors than a simple Bayesian single pixel test that
used correct global activity to guide the choice of the prior. Of
course, it can be claimed that this global activity is unknown. To
answer this, we can think of two possible strategies. The first is to
give up: prior knowledge of this type is not available and therefore
such improvement can't be reached. The second, much more
optimistic, way of facing this, is to realize that new methods are
needed that address the prior. In fact it strongly suggests seeking
any information that had not been used before. We devised a
method in which the prior information is to be found in the spatial
correlations of the data.

We are looking for activity which, although fairly localized,
appears in regions that are typically much larger than a single voxel.
This piece of information about the spatial correlation of activity can
be translated into useful prior distribution through a multiscale
approach. The prior is constructed by looking sequentially at different
spatial scales.

We first deal with the geometry. Define the multigrid: a
hierarchical sequence, labeled by ¢=0, 1,..., O, of square lattices
of size 29 77x2979. Label the sites of the lattices by p?=(p%, p%)
with p?, pi=1,..., 2279 This can be easily extended to three
(voxels instead of pixels) or more dimensions. Each lattice is
composed of sites which can be thought of as coarse grained pixels
or g-pixels. Each ¢-pixel comprises a region B, made up of 29> 24
original pixels (0-pixels). For ¢=0, the lattice is just the original
lattice of the individual pixels. For ¢g=Q the lattice is reduced to a
single O-pixel.

Now we describe the data. The data are made up of the set of
time series D°= {Y0} —o,...,rone time series, of length 7+ 1 for each
pixel at site p°. The data are used to define coarse grained g-scale
data sets: D?=1Y,,,(1), defined for each of the scales labeled by ¢, by
spatial averaging in the spirit of a Renormalization Group coarse
grain transformation:
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To implement the Bayesian approach, we need a model for the
data and the noise, that is, a function of time, M,(¢) for each pixel p
when it is active. Since its determination is the main topic of this
paper, we will describe this problem later. Consider for now that
M,(1) is given, to be specific consider that it is an ON/OFF square
function, we can then by a method analogous to that of Eq. (1)
define a coarse grained g-model:

Mpq(t) :217 Z Mpq 1([) :2% Z Mpo(t) (2)
P

9-1eByq PeByg

At any scale ¢ we define the set of hypotheses, one for each g-
pixel: HY: “There is activity in the g-pixel p?”

From models M,,,(f), data D= {Y,,,(f)} and a choice of a noise
process we construct a likelihood: P(D?IHY), a probability that
codifies the information that the data would have been observed if
the g-pixel were active.
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