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We propose to use dynamic Bayesian networks (DBN) to learn the
structure of effective brain connectivity from functional MRI data in an
exploratory manner. In our previous work, we used Bayesian networks
(BN) to learn the functional structure of the brain (Zheng, X.,
Rajapakse, J.C., 2006. Learning functional structure from fMR images.
NeuroImage 31 (4), 1601–1613). However, BN provides a single snap-
shot of effective connectivity of the entire experiment and therefore is
unable to accurately capture the temporal characteristics of connecti-
vity. Dynamic Bayesian networks (DBN) use a Markov chain to model
fMRI time-series and thereby determine temporal relationships of
interactions among brain regions. Experiments on synthetic fMRI data
demonstrate that the performance of DBN is comparable to Granger
causality mapping (GCM) in determining the structure of linearly
connected networks. Dynamic Bayesian networks render more accurate
and informative brain connectivity than earlier methods as connectivity
is described in complete statistical sense and temporal characteristics of
time-series are explicitly taken into account. The functional structures
inferred on two real fMRI datasets are consistent with the previous
literature and more accurate than those discovered by BN. Further-
more, we study the effects of hemodynamic noise, scanner noise, inter-
scan interval, and the variability of hemodynamic parameters on the
derived connectivity.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

The brain areas involved in various cognitive tasks can now be
identified quite accurately and reliably through functional
Magnetic Resonance Imaging (fMRI) experiments (Friston et al.,

1995; Rajapakse and Piyaratna, 2001; Wang and Rajapakse, 2006).
However, functional specialization of the brain does not provide a
holistic view of brain function and does not describe how different
brain regions communicate and interact with one another.
Considering the multiple processes taking place at different brain
regions and interacting with one another in executing a specific
task, extracting brain connectivity from fMRI data facilitates our
understanding of brain function (Buchel and Friston, 1997).
Recently, there has been an increasing interest in functional
integration studies to infer brain connectivity, especially for high-
order brain functions. In fMRI, the activity of brain is measured by
time-series of signals depending on blood-oxygenation-level-
dependent (BOLD) contrast. Given multivariate voxel-based
time-series, several techniques have been proposed to use fMRI
to characterize effective connectivity of the brain (Friston, 2003;
Goebel et al., 2003; McIntosh and Gonzalez-Lima, 1994;
Rajapakse et al., 2006; Zheng and Rajapakse, 2006).

Structural equation modelling (SEM) decomposes interregional
covariances of fMRI time-series to find functional interactions
among brain regions (Bullmore et al., 2000; McIntosh and
Gonzalez-Lima, 1994; Mechelli et al., 2002). The covariance
structure models the interactions of underlying neural systems only
in second-order statistical sense and therefore does not render
effective connectivity or the “cause and effect ” relationships among
brain regions. Dynamic causal modelling (DCM) characterizes the
dynamics of interactions among states (of brain regions) with
bilinear approximations of intrinsic coupling (among neuronal
states) and the influence of external inputs. An extended balloon
model is used in DCM to model hemodynamic response, which
enables inference of interactions at the neuronal level (Friston,
2003). Both SEM and DCM are confirmatory in the sense that the
analysis of brain connectivity requires a priori model to begin with
and is inapplicable for higher-order functions unique to human such
as language or cognition (Bullmore et al., 2000).

Granger causality mapping (GCM) extends the vector auto-
regressive (VAR) technique to capture interactions among brain
regions, assuming a causal and dynamic system of linear inter-
actions, driven by stochastic innovations (Goebel et al., 2003;
Harrison et al., 2003). A graphical approach linking the notions
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of graphical models and Granger causality has been applied to
describe dynamic dependencies in neural systems (Eichler, 2005).
Nevertheless, a multi-step procedure fitting autoregressive models
at each step is required to identify networks and therefore limits its
applicability for large networks.

Recently, two techniques based on Bayesian networks (BN)
(Zheng and Rajapakse, 2006) and independent component analysis
(ICA) (Rajapakse et al., 2006) were proposed to derive effective
connectivity of the brain from functional MRI data in an
exploratory manner. Bayesian networks do not provide an explicit
mechanism to represent temporal dependencies among multiple
processes at brain regions and instead give one snapshot of brain
connectivity, taking into consideration the whole experiment.
Therefore, neural systems derived with BN do not fully describe
causal relationships among brain regions. Moreover, because of
equivalent properties of BN, directions of some edges are
indeterminate and could be bi-directional (Chickering, 1995).

In this paper, we propose dynamic Bayesian networks (DBN) to
derive the effective connectivity of the brain by modelling fMRI
time-series in a Markov chain. DBN, an extension of BN, admits a
class of nonlinear continuous time interactions and provides a
direct mechanism to model temporal relationships among brain
regions. Functional MRI time-series of activated voxels are
modelled with first-order stationary Markov chains. The inter-scan
interval (ISI) of fMRI is used as the interval between two
consecutive instances of the Markov chain. The connectivity
between two time instances (or scans) is modelled in a transition
network of two layers of brain regions (or nodes). In a stationarity
setting, the connectivity of the transition network renders the
effective connectivity of the brain.

Dynamic Bayesian networks may assume a known or unknown
structure, and full or partial observability of states at the nodes. The
states of activated brain regions are fully observed as intensity
variations of fMRI time-series. Beginning with an unknown
connectivity structure, we find the best structure fitting fMRI data
in an exploratory manner. A greedy search or an expectation
maximization (EM) provide only a local search of the structure of
DBN. Starting with a partly connected structure, we use a Markov
chain Monte Carlo (MCMC) method to derive the structure of the
connectivity among brain regions from fMRI data. The MCMC
method attempts to find a globally optimal solution by sampling a
collection of highly probable structures from the equilibrium
distribution of the Markov chain (Husmeier, 2003b).

We describe DBN and structure learning algorithm in the
Method section. In experiments, synthetic fMRI data is used to
illustrate the robustness of our approach and compare with GCM.
The method is further demonstrated by exploring functional
structures from real fMRI data obtained in two experiments: a
silent word reading task and a counting Stroop task. A comparison
between structures derived from BN and DBN is also provided.

Method

This section introduces DBN for modelling effective brain
connectivity from functional MRI data. Then, a MCMC algorithm
for structure learning is described.

Neural system modelling with DBN

When modelling the brain connectivity, the nodes in the
Bayesian network are associated with activated brain regions while

the edges characterize the interactions among regions. Consider a
neural system of n brain regions activated by a sensory or cog-
nitive task and let the regions be indexed in a set I={i : i=1, 2, …
n}. The activation of a brain region is measured by the average
fMRI time-series over the region. Let xi be the activation mea-
suring the hemodynamic response of region i.

Bayesian networks (BN) describe the probability distribution
over the activation of brain regions, where the graphical structure
provides an easy way to specify conditional interdependencies for
a compact parameterization of the distribution. The BN is defined
by a structure s and a joint distribution over the set of time-series
x={xi : i∈ I}. The BN structure is a directed acyclic graph (DAG)
characterized by the absence of directed cycles. If ai denote the set
of activations of the parents of the region i, a DAG offers a simple
and unique way to decompose the likelihood of activation in terms
of conditional probabilities:

PðxjhÞ ¼ ∏
iaI

Pðxijai; hiÞ ð1Þ

where θ={θi : i∈ I} represents the parameters of the conditional
probabilities.

Dynamic Bayesian network extends BN model to incorporate
temporal characteristics of the time-series x. Let us explicitly
represent temporal processes of brain regions and x(t)={xi(t):
i∈ I} representing the activations of n brain regions at time t. The
instances t=1, 2, …T correspond to the times when brain scans are
taken and T denotes the total number of scans. In order to model
the temporal dynamics of brain processes, we need to model a
probability distribution over the set of random variables ⋃t=1

T x(t)
which is rather complex and practically prohibitive.

To avoid an explosion of the model complexity, we assume the
temporal changes of activations of brain regions are stationary and
first-order Markovian:

Pðxðt þ 1ÞjxðtÞ; N xð1ÞÞ ¼ Pðxðt þ 1ÞjxðtÞÞ ð2Þ

where the transition probabilities P(x(t+1)∣x(t)) are independent
of t. The transition network represents the connectivity structure
between two consecutive brain scans, which renders the joint
distribution of all possible trajectories of temporal processes. The
structure of the DBN is obtained by unrolling the transition
network over consecutive scans for all t=1, 2, …T. The first-order
stationary assumption provides a tractable causal model that ex-
plicitly takes into account the temporal dependencies of brain
processes. Higher-order and non-stationary Markov models allow
more complex temporal processes and connectivity patterns. How-
ever, such complex models pose obvious challenges in estimating
structures and parameters.

Unlike BN, DBN is capable of modelling recurrent networks
while still satisfying the acyclic constraint of the transition
network. This is an important advantage of modelling neural
system with DBN as there exist cyclic functional networks in the
brain, such as cortico-subcortical loops. Inter-scan connections to
same brain region itself are considered as default prior connections
and their parameters are allowed to adapt. We do not allow intra-
scan connections because the effect on a brain region takes place
with a time delay after its cause. Although instantaneous inter-
actions may exist due to low temporal sampling and hemodynamic
modulation of fMRI, the determination of such interactions
remains as a limitation of neural systems modelling with functional
MRI.
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