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A post-processing method for group discriminant analysis of fMRI is
proposed. It assumes that the fMRI data have been pre-processed and
analyzed so that each voxel is given a statistic specifying task-related
activation(s), and that individually specific regions of interest (ROIs)
have been drawn for each subject. The method then utilizes Local
Linear Discriminant Analysis (LLDA) to jointly optimize the
individually-specific and group linear combinations of ROIs that
maximally discriminates between groups (or between tasks, if using the
same subjects). LLDA tries to linearly transform each subject’s voxel-
based activation statistics within ROIs to a common vector space of
ROI combinations, enabling the relative similarity of different
subjects’ activation to be assessed. We applied the method to data
recorded from 10 normal subjects during a motor task expected to
activate both cortical and subcortical structures. The proposed method
detected activation in multiple cortical and subcortical structures that
were not present when the data were analyzed by warping the data to a
common space. We suggest that the method be applied to group fMRI
data when warping to a common space may be ill-advised, such as
examining activation in small subcortical structures susceptible to mis-
registration, or examining older or neurological patient populations.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Group analysis in fMRI is typically done in several consecutive
steps. First, fMRI data are corrected for motion, despite the fact

that most methods cannot easily distinguish changes in fMRI
signal from that induced by motion (Liao et al., 2005, 2006). Data
are then spatially transformed to a common space such as the atlas
by Talaraich (Talairach and Tournoux, 1988) or the probabilistic
space suggested by the Montreal Neurological Institute (Collins et
al., 1998) to minimize intersubject differences. However, because
of the variability in human brain anatomy, the inter-subject
registration is typically imperfect, so spatial low-pass filtering
(“smoothing”) is performed to de-emphasize anatomical differ-
ences (Friston, 1996). Once data have been motion corrected,
warped to a common space, and spatially smoothed, the task-
related activation of a voxel of a subject k is estimated with linear
regression techniques:

Yk ¼ Xkbk þ ek ; and CovðekÞ ¼ r2kVk ð1Þ

where Yk is the Tk×1 time course of the voxel, Xk is the Tk×D
design matrix containing the hypothesized activation (often
incorporating estimates of the hemodynamic response function)
as well as other covariates, εk is the Tk×1 vector of residuals, σk

2 is
the homogeneous variance of the residuals, and Vk is the
correlation matrix. The subscript k indicates that all the variables
are related to subject k.

As fMRI data are typically not temporally white, data are often
pre-whitened using a whitening matrix Wk such that:

WkVkW
T
k ¼ I ð2Þ

(for an excellent summary the reader is referred to: Mumford and
Nichols, 2006). If each term in Eq. (1) is pre-multiplied by Wk, we
have:

Yk* ¼ Xk*bk þ ek* ð3Þ
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where the superscript *denotes the whitened quantities. The
whitening matrix Wk is estimated by the residuals εk and Vk as:

Wk ¼ V
�1

2
k : ð4Þ

The regression estimates of Eq. (3) can then be estimated by
Ordinary Least Squares (OLS) to give the Generalized Least
Squares estimate of Eq. (1):

b̂
GLS

k ¼ ðX*Tk Xk*Þ�1X*Tk Yk* ð5Þ

Cov b̂
GLS

k

� �
¼ r2kðX*Tk Xk*Þ�1 ð6Þ

Contrasts between conditions are of most interest in an
experiment, e.g., contrasting BOLD signal during performance of
a given task compared to rest. In the study on a single subject, the
null hypothesis is that the contrast between the least-squared
estimates is zero:

H0 : cbk ¼ 0

where c is the contrast row vector. For example, if we are interested
in the comparison between task 1 and task 2, c is [1, −1].

Group analyses are usually done using a Summary Statistics
method, which is a two-staged approach; first individual models
are fit to each subject as described above, and then a second level is
applied to make group inferences on the cβk (Mumford and
Nichols, 2006). In the usual situation where one is contrasting
activation across two groups, the second level is a multivariate
regression equation with the design matrix encoded with group
inclusion indicators (Fig. 1(a)):

bcont ¼ Xgbg þ eg ð7Þ

where Xg ¼

10
N
10
01N
01

0
BBBB@

1
CCCCA is a binary K×2 matrix coded to show group

inclusion (K is the number of subjects from the two groups), βcont
is composed of the contrasts cβk for each individual as defined in
the first stage, βg= [βg1, βg2]

T is mean activation of the two groups
and εg∼N(0,δg

2Vg) is the residual with the variance δg
2 and the

correlation matrix Vg being a diagonal matrix, typically just I. Here
the null hypothesis is that the group activations for a given voxel in
the common spatially transformed space are not significantly
different:

H0 : bg1 � bg2 ¼ 0:

A number of different implementations have been proposed to
implement the above analysis in a practical way. The fMRIStat
method uses Restricted Maximum Likelihood (ReML) to estimate
σg
2 (Worsley et al., 2002), then smoothes the data to increase its

degree of freedom and accuracy and finally tests the hypothesis
with t-statistics. The SPM2 package (Friston et al., 2002a,b)
estimates the δ2V+δg

2Vg term with ReML under a simplifying
assumption that all the subjects share a common covariance matrix
δk
2Vk=δ

2V, and then tests the hypotheses with F statistics. The
FMRIB software library estimates σg

2 with the maximum a

posteriori (MAP) criteria, then screens obviously insignificant
voxels with Z-statistics and finally performs a Bayesian inference
on the significance of the remaining voxels with a slower but more
accurate Markov Chain Monte Carlo (MCMC) simulation
(Beckmann et al., 1998).

Nevertheless, there are a number of shortcomings with the
previously described methods. The above methods work on the
voxel level—this assumes that after suitable spatial transformation,
there is a perfect correspondence between the same voxel across
subjects. While this may be mitigated somewhat by spatial
smoothing, such low-pass filtering degrades the spatial resolution
of the data. Activation estimates in small, subcortical structures
such as the basal ganglia or thalami, which abut functionally
different tissues (e.g., the internal capsule), may be particularly
affected by mis-registration errors.

One way to partially circumvent the difficulties associated with
spatially transforming functional maps to a common space is to
manually draw anatomical regions of interest (ROIs) for each
subject, and performing analyses at the ROI level—as opposed to
the individual voxel level. Using standard atlases, a particular brain
region (e.g., the lateral cerebellar hemisphere) is manually
circumscribed on the high-resolution structural MRI scans that
have been co-registered with the functional data, and the voxels
within this region are analyzed. The benefit of this method is that it
does not require rigid spatial transformation, preventing possible
gross distortion of a particular brain area, as may occur if the
anatomy of a given individual differs significantly in size and
shape to the homologous area in the exemplar brain. However,
drawing ROIs is labor-intensive, subject to human error, and
requires the assumption that a functionally active region (the SMA
for example) of a given brain will be within an anatomically
standardized index (i.e., Broadman’s Area 9) which is used to draw
the ROI.

In addition to the possibilities of mis-registration, the pre-
viously described voxel-based methods do not explicitly model
interactions between brain regions. Covarying regions are often of
interest, but are not included in the group methods described
above. Conceptually, group methods are done in two stages: in the
first stage, individually specific regression models are fit to the
data; and then the results of these models are used in a group-level
analysis. Because the goal of these methods is to test a specific
hypothesis, these methods may be conducted sequentially. In
contrast, if the goal is to find which combination of brain regions is
maximally different between tasks, it is desirable to jointly
optimize the individual statistical model and the overall models
simultaneously.

In individual-subject fMRI analysis, in addition to hypothesis
driven methods, there is a role for data driven methods, such as
Independent Component Analysis (ICA) (McKeown et al., 1998;
Calhoun et al., 2003), which do not need rigorous a priori
specification of activation patterns. In an analogous manner, there
may be particular interest in discovering the combinations of brain
regions (specified by ROIs) that are maximally contrasted during
performance of certain tasks (Fig. 1(b)). There is therefore a need for a
multivariate, discriminant analysis approach that works at the region
of interest (ROI) level as opposed to the individual voxel level.

Previous work has taken individual activations (or the t-statistics
associated with them) and used a multivariate discriminant
approach (McKeown and Hanlon, 2004). In order to apply a
discriminant approach, we first assume that some statistical
analysis has been performed to assign a t-statistic, related to
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