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We describe a Bayesian scheme to analyze images, which uses spatial
priors encoded by a diffusion kernel, based on a weighted graph
Laplacian. This provides a general framework to formulate a spatial
model, whose parameters can be optimized. The application we have in
mind is a spatiotemporal model for imaging data. We illustrate the
method on a random effects analysis of fMRI contrast images from
multiple subjects; this simplifies exposition of the model and enables a
clear description of its salient features. Typically, imaging data are
smoothed using a fixed Gaussian kernel as a pre-processing step before
applying a mass-univariate statistical model (e.g., a general linear
model) to provide images of parameter estimates. An alternative is to
include smoothness in a multivariate statistical model (Penny, W.D.,
Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian fMRI time series
analysis with spatial priors. Neuroimage 24, 350–362). The advantage
of the latter is that each parameter field is smoothed automatically,
according to a measure of uncertainty, given the data. In this work, we
investigate the use of diffusion kernels to encode spatial correlations
among parameter estimates. Nonlinear diffusion has a long history in
image processing; in particular, flows that depend on local image
geometry (Romeny, B.M.T., 1994. Geometry-driven Diffusion in
Computer Vision. Kluwer Academic Publishers) can be used as
adaptive filters. This can furnish a non-stationary smoothing process
that preserves features, which would otherwise be lost with a fixed
Gaussian kernel. We describe a Bayesian framework that incorporates
non-stationary, adaptive smoothing into a generative model to extract
spatial features in parameter estimates. Critically, this means adaptive
smoothing becomes an integral part of estimation and inference. We
illustrate the method using synthetic and real fMRI data.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Functional MRI data are typically transformed to a three-
dimensional regular grid of voxels in anatomical space, each
containing a univariate time series of responses to experimental
perturbation. The data are then used to invert a statistical model, e.g.,
general linear model (GLM), after a number of pre-processing steps,
which include spatial normalization and smoothing (i.e., convolving
the data with a spatial kernel). In mass-univariate approaches (e.g.,
statistical parametric mapping), a statistical model is used to extract
features from the smoothed data by treating each voxel as a separate
observation. Model parameters, at each voxel, are estimated (Friston
et al., 2002) and inference about these parameters proceeds using
SPMs or posterior probability maps (Friston and Penny, 2003).
Smoothing the data ensures the maps of parameter estimates are also
smooth. This can be viewed as enforcing a smoothness prior on the
parameters. The current paper focuses on incorporating smoothness
into the statistical model bymaking smoothness a hyperparameter of
the model and estimating it using empirical Bayes. This optimizes
the spatial dependencies among parameter estimates and has the
potential to greatly enhance spatial feature detection.

Recently Penny et al. (2005) extended the use of shrinkage priors
on parameter estimates (Penny et al., 2003), which assume spatial
independence, to spatial priors in a statistical model of fMRI time
series. They developed an efficient algorithm using a mean-field
approximation within a variational Bayes framework. The result is a
smoothing process that is incorporated into a generativemodel of the
data, where each parameter is smoothed according to a measure of
uncertainty in that parameter. The advantage of a mean-field
approximation is that inversion of a requisite spatial precision matrix
is avoided. The advantage of a Bayesian framework is that the
evidence for different spatial priors can be compared (MacKay,
2003). Other Bayesian approaches to spatial priors in fMRI include
those of Gossl et al. (2001); Woolrich et al. (2004); and more
recently Flandin and Penny (2007).

There are two main departures from this previous work on
spatiotemporal models in the current method. The first is that we use
a Gaussian process prior (GPP) over parameter estimates. Spatial
correlations are then encoded using a covariance matrix instead of
precisions (cf. Penny et al., 2005). The second is that the covariance
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matrix is the GreenTs function of a diffusive process, i.e., a diffusion
kernel, which encodes the solution of a diffusion equation involving a
weighted graph Laplacian. This has the advantage of providing a full
spatial covariance matrix and enables inference with regards to the
spatial extent of activations. This is not possible using a mean-field
approximation that factorizes the posterior distribution over voxels.
The result is an adaptive smoothing that can be spatially non-
stationary, depending on the data. This is achieved by allowing the
local geometry of the parameter field to influence the diffusion
kernel (smoothing operator). This is important as stationary smooth-
ing reveals underlying spatial signal at the expense of blurring spatial
features. Given the convoluted spatial structure of the cortex and
patchy functional segregation, it is reasonable to expect variability in
the gradient structure of a parameter field. The implication is that the
local geometry of activations should be preserved. This can be
achieved with a nonlinear smoothing process that adapts to local
geometric ‘features’. A disadvantage is the costly operation of
evaluating matrix exponentials and inverting potentially large
covariance matrices, which the mean-field approach avoids. How-
ever, many approximate methods exist (MacKay, 2003; Rasmussen
and Williams, 2006) that can ameliorate this problem, e.g., sparse
GPPs (see discussion andQuinonero-Candela andRasmussen, 2005).

The paper is organized as follows. First, we discuss background
and related approaches, before giving an outline of the theory of the
method. We start with the model, which is a two-level general linear
model (GLM)withmatrix-variate density priors on GLM parameters.
We focus on reducing the model to the specification of covariance
components, in particular, the form of covariance and its hyperpara-
meters. We then look at the form of the spatial priors using graph
Laplacians and diffusion kernels. We then describe the EM algorithm
that is used to update hyperparameters of covariance components,
which embody empirical spatial priors. The edge preserving quality
of diffusion over a weighted graph is demonstrated using synthetic
data and then applied to real fMRI data. The illustrations in this paper
use 2D spatial images, however, the method can be easily extended to
3D, subject to computational resources, which would be necessary to
analyze a volume of brain data. We perform a random effects
(between subjects) analysis (Penny and Holmes, 2003) on a sample
of contrast images from twelve subjects. This means that we consider
a scalar field of parameter estimates encoding the population
response. However, the nonlinear diffusion kernels described here
can be extended to fields of vectors and matrices (ChefDTHotel et al.,
2004; Zhang and Hancock, 2006b). This paper concludes with
comments on outstanding issues and future work.

Background

The current work draws on two main sources in the literature;
diffusion-based methods in image processing and Gaussian process
models (GPM). The image processing community has been using
diffusion models for many years, e.g., for the restoration of noisy
images (Knutsson et al., 1983). For overviews, from the pers-
pective of scale-space theories, see Romeny (1994, 2003). These
models rest on the diffusion equation, which is a nonlinear partial
differential equation describing the density fluctuations in an
ensemble undergoing diffusion; μ˙=j·D(μ)jμ, where μ can be
regarded as the density of the ensemble (e.g., image intensity) and
D is the diffusion coefficient. Generally, the diffusion coefficient
depends on the density, however, if D is a constant, the equation
reduces to the ‘classical heat equation’; μ ˙=Dj2μ, where j2≡Δ is
the Laplacian operator (second-order spatial derivative). A typical

use in image processing is to de-noise an image, where the noisy
image is the initial condition, μ(t=0) and a smoothed, de-noised,
image is the result of integrating the heat equation to evaluate the
diffused image at some time later; μ(t). In particular, Perona and
Malik (1990) used nonlinear diffusion models to preserve the
edges of images using an image dependent diffusion term,
D=D(jμ). The dependence on this spatial gradient has the effect
of reduced diffusion over regions with high gradient, i.e., edges.
Later formulations of nonlinear diffusion methods include those of
Alvarez et al. (1992) and Weickert (1996). Of particular relevance
to the method presented here are graph-theoretic methods, which
use graph Laplacians (Chung, 1991). These have been used
recently to adaptively smooth scalar, vector and matrix-valued
images (Zhang and Hancock, 2005). Graphical methods provide a
general formulation on arbitrary graphs, which is easy to
implement. There are also many useful graph-based algorithms
in the literature, e.g., image processing on arbitrary graphs (Grady
and Schwartz, 2003) and, more generally, graph partitioning to
sparsify and solve large linear systems (Spielman and Teng, 2004).

Gaussian process models also have a long history. A Gaussian
process prior (GPP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution (MacKay,
2003; Rasmussen and Williams, 2006). As such it is completely
specified by a mean and covariance function. This is a very flexible
prior as it is a prior over a function, which can be used to model
general data, not just images. Given a function over space, this
function is assumed to be a sample from a Gaussian random field
specified by a mean and covariance, which can take many forms,
as long as it is positive semi-definite.

Diffusion methods in image processing and covariance
functions in GPMs furnish the basis of a spatial smoothing
operator; however, the emphasis of each approach is different. One
main difference is that a GPM is a statistical model from which
inferences and predictions can be made (MacKay, 1998). The
objective is not solely to smooth data, but to estimate an optimal
smoothing operator, which is embedded in a model of how the data
were generated. Graphical models in machine learning (Jordan,
1999) provide a general and easy formulation of statistical models.
The similar benefits of graph-based diffusion methods in image
processing further motivates the use of graph-theoretic approaches
to represent and estimate statistical images, given functional brain
data.

The relation between models of diffusion and GPPs is seen
when considering a random variable as a diffusive process, which
locally is a Gaussian process. We can see this by comparing the
GreenTs function of the classical heat equation, used in early
diffusion methods in image processing (Romeny, 1994) and the
squared exponential (SE) covariance function used in GPMs
(Rasmussen and Williams, 2006). In two dimensions, (uk, ul),
where subscripts indicate location in the domain and D is a
scalar;

�μ ¼ DDμ

μðt þ sÞ ¼ KðsÞμðtÞ

K uk ;ul ;sð Þ ¼ 1
4pDs

exp �ðuk � ulÞT ðuk � ulÞ
4Ds

 !
ð1Þ

where K(τ) is the GreenTs function (solution) of the diffusion
equation that represents the evolution of a solution over time. The
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