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Cognitive processing requires integration of information processed
simultaneously in spatially distinct areas of the brain. The influence
that two brain areas exert on each others activity is usually governed
by an unknown function, which is likely to have nonlinear terms. If the
functional relationship between activities in different areas is domi-
nated by the nonlinear terms, linear measures of correlation may not
detect the statistical interdependency satisfactorily. Therefore, algo-
rithms for detecting nonlinear dependencies may prove invaluable for
characterizing the functional coupling in certain neuronal systems,
conditions or pathologies. Synchronization likelihood (SL) is a method
based on the concept of generalized synchronization and detects
nonlinear and linear dependencies between two signals (Stam, C.J.,
van Dijk, B.W., 2002. Synchronization likelihood: An unbiased
measure of generalized synchronization in multivariate data sets.
Physica D, 163: 236–241.). SL relies on the detection of simultaneously
occurring patterns, which can be complex and widely different in the
two signals. Clinical studies applying SL to electro- or magnetoence-
phalography (EEG/MEG) signals have shown promising results. In
previous implementations of the algorithm, however, a number of
parameters have lacked a rigorous definition with respect to the time-
frequency characteristics of the underlying physiological processes.
Here we introduce a rationale for choosing these parameters as a
function of the time-frequency content of the patterns of interest. The
number of parameters that can be arbitrarily chosen by the user of the
SL algorithm is thereby decreased from six to two. Empirical evidence
for the advantages of our proposal is given by an application to EEG
data of an epileptic seizure and simulations of two unidirectionally
coupled Hénon systems.
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Introduction

Cognition depends on coordinated neuronal activity in
spatially distinct areas of the brain (Varela et al., 2001). Two
central issues in cognitive neuroscience are to detect the brain
areas that interact during various tasks and to reveal the nature of
their interaction. It is natural to assume that the coordination of
activity or exchange of information between brain areas gives rise
to a statistical interdependence between the activities in these
areas. In other words, we may reveal the spatial functional
connectivity underlying cognitive processing by mapping the
statistical interdependencies between time series of neuronal data
recorded from different anatomical locations (Lee et al., 2003).
The evidence suggests that functional interactions are mediated by
synchronization of oscillations and that the frequency content of
these oscillations has some specificity to the function that they
serve (Sarnthein et al., 1998; von Stein and Sarnthein, 2000;
Varela et al., 2001). Nevertheless, neuronal activity patterns may
be related through nonlinear functions including strongly transient
or cross-frequency phase locking (Friston, 2000; Stam et al.,
2003; Palva et al., 2005a). To detect statistical interdependencies
that are not governed by simple linear functions, so-called
“nonlinear methods” are required.

Many coupling measures for detecting linear and nonlinear
interdependencies have been proposed (for a review, see Stam,
2005). Currently, there is no consensus on how to best detect non-
linear interdependencies in neurophysiological data (Quiroga et al.,
2002; David et al., 2004). In fact, different algorithms have been
shown to detect nonlinear interactions between brain regions (Stam
et al., 2003). The most general form of interaction between two
dynamical systems is generalized synchronization, where the state of
a response system Y is a function of the state of the driver system X:
Y=F(X) (Rulkov et al., 1995). For neural systems, this implies that if
a given area generates a specific pattern of activity (X) at different
times, the functionally connected brain areas are likely to generate
specific patterns of activity F(X) at those same points in time. Note
that the patterns in the different areas may be widely different
because of the potentially nonlinear coupling that governs the
functional relationships (in other words, F may be a nonlinear
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function). Moreover, one may be interested in the coupling between
organs that produce qualitatively different signals, e.g., heart-rate
variability and sleep EEG (Dumont et al., 2004).

A natural way to investigate generalized synchronization is to
represent the state of dynamic systems in a given time window by
vectors in the so-called state space formed by time-delay embedding
(Takens, 1981;Ott, 1993). The problem of detecting similar dynamic
states then translates into finding embedding vectors that are close in
state space. This approach was used in the interdependency measure
of generalized synchronization between two time series (Arnhold et
al., 1999). However, as pointed out previously, the interdependency
measure is sensitive to signals having different amplitudes or
different degrees of freedom (Arnhold et al., 1999; Pereda et al.,
2001). To solve this problem, Stam and van Dijk (2002) introduced a
measure of generalized synchronization termed synchronization
likelihood. In synchronization likelihood, the critical distances
determining whether state vectors are close or not are defined
separately for the two systems. The interdependency measure (S)
and the synchronization likelihood (SL) share the problem, however,
of having six parameters to be chosen by the user of the algorithms
and little is known about their influence on the estimation of
interdependency between coupled systems.

Here we argue that when choosing the values of the time-delay
parameters, the SL algorithm is implicitly biased towards detecting
patterns in certain frequency bands. Thus, we introduce lower or
upper bounds for the values of SL parameters on the basis of the
frequency range of interest and the sampling frequency of the signals.
Moreover, we show for the first time examples of recurrent patterns
detected by the SL algorithm and how these patterns are distributed in
the time series. Finally, we explain the importance of having a lower
bound for the number of recurrences and in what sense the temporal
resolution of the SL algorithm is surprisingly good.

Methods

Time-frequency synchronization likelihood

Here we describe the synchronization likelihood method with
explicit time-frequency priors. The differences between the
present and the previous version of SL are addressed in the
discussion.

The basic assumption of the method is that the state of the
system at any given moment may be represented by an embedding
vector, and thus that recurrent states are represented by similar
embedding vectors (Takens, 1981). The computation of SL
between two time series can be divided into the following five
steps: (1) definition of the frequency band of interest and band-pass
filtering; (2) construction of time-delay embedding vectors that
represent dynamical states of the neural systems; (3) localization of
the times of recurrent dynamical states in both systems; (4)
computation of the likelihood (SL) that the recurrence of a state in
one system is accompanied also by a recurrent state in the other
system; and (5) repetition of steps 2–4 at different times in order to
obtain a time series of SL values.

Definition of the frequency band of interest and band-pass
filtering

Before applying the SL algorithm, one has to decide for the
frequency band of interest, i.e., the lower and upper bounds of the
frequency content of the patterns. Note that this does not imply that
the patterns cannot have complex shapes, although this would

usually require a broad range of frequencies. The signals are then
filtered with a suitable band-pass filter.

Representation of the dynamical state of the neural systems with
time-delay embedding vectors

Following the decision on the frequency range of interest, we use
time-delay embedding to form a state-space representation of the
system dynamics. The rationale in the present study is that the state
vector must sample the signal at sufficiently short intervals to pick
up the fastest oscillation and also to be long enough to sample the
slowest oscillation. From the time series xk,i of channel k, the state
vector Xk,i representing the state of the system at time i is given by:

Xk;i ¼ ðxk;i; xk;iþL; xk;iþ2*L; N ;xk;iþðm�1Þ*LÞ ð1Þ

Here, L is the lag and m is the dimension of the embedding vector in
state space. Note that Xk,i represents the state of the system in a time
interval of length L*(m−1), but for convenience we will refer to this
interval as the state at time i, i.e., the beginning of the interval.

The SL method assumes that in a given period of time a pattern
of activity will closely repeat itself a number of times in one signal
and in the case of generalized synchronization between two signals
another pattern tends to repeat itself in the other signal at those
same times. The likelihood of repetition in the second signal may
depend, e.g., on the strength of coupling between the two systems
or on the signal-to-noise ratio of the data. The highest frequency in
the patterns was defined above (step 1) and the embedding lag is
chosen so as to sample the fastest oscillations. According to the
Nyquist sampling theorem, a dynamical process must be sampled
at minimum twice the highest frequency (HF) of its fluctuations in
order for the discrete signal to adequately represent the dynamics
of the underlying system. In practice, however, a factor of three is
commonly used (Smith, 1999):

L ¼ fs
3*HF

ð2Þ

where fs is the sampling frequency in Hz.
The lowest frequency (LF) has the longest period and thus

determines the length of the state vector:

L* m� 1ð Þ ¼ fs
LF

fm ¼ 3*HF
LF

þ 1 ð3Þ

Detection of recurrences of states in two potentially coupled
systems

Having the dynamical states of a system A represented in state
space, a criterion for when to consider states at different times
similar or “recurrent” is needed. We construct a reference vector in
channel A at time i, XA,i, and vectors XA,j at times j, ranging from
i−W2/2 to i−W1/2 and from i+W1/2 to i+W2/2 in steps of 1/fs
(Fig. 1a). The time windows W1 and W2 are defined later in this
section. The Euclidean distance between the state vectors XA,j and
the reference vector is computed (other distance measures such as
the maximum norm may also be used). The pref is now introduced
to denote the percentage of vectors XA,j that are considered close
enough to XA,i to represent the same state of the system (Fig. 2),
which leads to the definition of a critical Euclidean distance, rA,
for which: |XA,i−XA,j|<rA. A pref =0.05 means that five percent of
the vectors XA,j will be considered recurrences of XA,i. The same
procedure is applied to channel B at the same time point. The pref
is generally associated with different critical distances (rA and rB)
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