
Risk distribution and its influence on the population targets for
diabetes prevention☆

Laura C. Rosella a,b,c,⁎, Michael Lebenbaum a, Ye Li a,c, Jun Wang a, Douglas G. Manuel a,b,d,e,f

a Public Health Ontario, Toronto, Ontario, Canada
b Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
c Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
d Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
e Department of Family Medicine and Epidemiology and Community Medicine, University of Ottawa, Canada
f Statistics Canada, Ottawa, Ontario, Canada

a b s t r a c ta r t i c l e i n f o

Article history:
Received 4 June 2012
Accepted 6 October 2013
Available online 23 October 2013

Keywords:
Diabetes mellitus, type 2
Risk assessment
Primary prevention

Objective. To quantify the influence of type 2 diabetes risk distribution on prevention benefit and apply a
method to optimally identify population targets.

Methods. We used data from the 2011 Canadian Community Health Survey (N=45,040) and the validated
Diabetes Population Risk Tool to calculate 10-year diabetes risk. We calculated the Gini coefficient as a measure
of risk dispersion. Intervention benefit was estimated using absolute risk reduction (ARR), number-needed-to-
treat (NNT), and number of cases prevented.

Results. There is a wide variation of diabetes risk in Canada (Gini=0.48) and with an inverse relation to
risk (r = −0.99). Risk dispersion is lower among individuals meeting an empirically derived risk cut-off
(Gini = 0.18). Targeting prevention based on a risk cut-off (10-year risk ≥ 16.5%) resulted in a greater
number of cases prevented (340 thousand), higher ARR (7.7%) and lower NNT (13) compared to targeting
individuals based on risk factor targets.

Conclusions. This study provides empirical evidence to demonstrate that risk variability is an important
consideration for estimating the prevention benefit. Prioritizing target populations using an empirically
derived cut-off based on a multivariate risk score will result in greater benefit and efficiency compared to
risk factor targets.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Introduction

A key component tomanage the burden of type 2 diabetes (T2DM) in
the population is accurately identifying and characterizing baseline risk of
developing T2DM in the population in order to appropriately plan and
target prevention strategies. This includes articulating both the level of
risk (likelihood of developing diabetes in the future) and the distribution
of risk (what proportion of the population fall into a given risk category).
The idea of risk dispersion was originally proposed by Rose, where he
argued that variability of risk in the population can influence intervention
effectiveness in terms of high-risk versus population-wide prevention
(Rose, 1992). However, Rose's work focused on the conceptualization of

risk conferred by a single risk factor (i.e. blood pressure). The use of
predictive algorithms is an efficient approach to identifying risk cut-offs
for targeted interventions that allows for the inclusion of multiple risk
factors (McLaren et al., 2010). These approaches have recently been
developed and validated for use at the population level (Manuel et al.,
2012; Rosella et al., 2011).

While risk algorithms are increasingly being used in clinical and
recently in population settings, further research is needed on how
to best interpret and apply risk-cut-offs to inform intervention
approaches. For example, it is not clear what magnitude of diabetes
risk (e.g. 10-year risk ≥ 20%) would result in the greatest population
benefit from a given diabetes prevention strategy. Most risk cut-offs
identified from other algorithms appear arbitrary and are not designed
to specifically maximize prevention outcomes. An important cut-off
attribute that is currently missing from prevention strategies is
maximizing strategy effic\acy, meaning the risk level used to identify
target populations balances the number of individuals targeted with
the potential benefit. In addition, few studies have directly examined
how dispersion and concentration of diabetes risk in the population
can influence the impact of a given strategy.
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The objectives of this study are to demonstrate how the dispersion of
risk in the population, measured by the Gini coefficient, is correlated
with the population risk of diabetes and to generate empiric risk
cut-offs based on a validated risk score in order to maximize the
population benefit as measured by absolute risk reduction in the
population.

Methods

We first updated an existing validated risk prediction algorithm for incident
diabetes, referred herein as DPoRT 2.0. DPoRT is a statistical model based on the
Weibull survival distribution and is validated to calculate up to 10-year diabetes
risk in any population-based data that contains self-reported risk factor
information on age, height and weight, ethnicity, education, immigrant status,
hypertension, self-reported heart disease, income, smoking and sex for those
age 20 years and older and who are currently without diabetes. The original
risk algorithm was based on a cohort of individuals 19,861 ≥ 20 years of age
without diabetes followed between 1996 and 2005 and validated in two
external cohorts in Ontario (N=26,465) andManitoba (N=9899). Full details
of development and validation can be found in a previous study (Rosella et al.,
2011).

DPoRT 2.0 follows the same methodology with updated coefficients based
onmore recent data including individuals from the original 1996Ontario cohort
and the Ontario respondents of Cycle 1.1 (2001) and 2.1 (2003) of the Canadian
Community Health Survey (CCHS) linked to the Ontario Diabetes Database
(ODD) with follow-up until 2011 (Hux and Ivis, 2005) resulting in a total
sample size of 69,606 individuals and 667,337 person-years of follow-up.
DPORT 2.0 was externally validated in Ontario respondents to the 2005 CCHS
linked to the ODD with follow-up until 2011. We examined two indices of
model performance: discrimination and calibration. Model discrimination is
the ability to correctly classify those with and without the disease based on
predicted risk, i.e. correctly ranking those who will and will not develop
diabetes. Discrimination is measured using a C statistic, which is analogous to
the area under the receiver operating characteristic curve. This study uses a C
statistic modified for survival data developed by Pencina and D'Agostino
(2004). Calibration or accuracy is the extent of agreement between predicted
and observed outcomes. It is measured using the Hosmer and Lemeshow
statistic (H–L test), a χ2 test, which measures observed and predicted values
over deciles of predicted risk (D'Agostino et al., 2001; Hosmer and
Lemenshow, 2000). In our study, it was calculated by comparing observed
diabetes rates and DPoRT-predicted diabetes probabilities using a modified
version of the H–L χ2 statistic for time-to-event data (D'Agostino et al., 2001;
Nam, 2000). To mark sufficient calibration, χ2 = 20 was used as a cut-off
(p b 0.01). The CCHS is a nationally representative household survey of
Canadians conducted by Statistics Canada which collects information on health
status, determinants of health, and health care utilization. Households are
selected though stratified, multilevel cluster sampling of private residences
using provinces and/or local planning regions as the primary sampling unit.
The surveys are conducted through telephone and in-person interviews and
all responses are self-reported. The target population consists of persons aged
12 and over residing in private dwellings in all provinces and territories, except
those living onAboriginal reserves, on Canadian Forces Bases, or in some remote
places. These surveys use a multistage stratified cluster design and provide
cross-sectional data representative of 98% of the Canadian population over the
age of 12 years. All surveys used for development, validation, and application
of DPoRT attained at least a 75% overall response rate (Statistics Canada, 2002,
2003).

We applied the validated DPoRT 2.0 to Canadian adults (age≥20), who are
non-pregnant, free of diabetes and had valid information on risk factors in the
2011 CCHS Share file (N = 45,040). For every individual in the CCHS, we
calculated 10-year diabetes risk and summarized this risk at the national level.
We calculated confidence intervals taking into account both coefficient and
complex survey variation generated using bootstrap techniques (Kovacevic
et al., 2008).

The Gini coefficient applied to DPoRT-estimated risk was used as a measure
of risk dispersion. The Gini coefficient is a measure of statistical dispersion (also
known as variability) and can be simply defined as the average of all the
absolute differences of pairs in a sample (Glasser, 1962). While typically used
to describe income inequality, it is a general statistic of inequality that has
been applied to a variety of other outcomes including other health indices
(Asada, 2005). A Gini coefficient of zero expresses perfect equality where all

values are the same for all individuals in a population (e.g. where everyone
has exactly the same diabetes risk). A Gini coefficient of one expressesmaximal
inequality among values (e.g. where only one person has all the diabetes risk).
We examine the relationship between level of risk in the population and
dispersion of diabetes risk by ranking percentiles of the population and then
calculating the Gini coefficient of the population included within percentile
groups (e.g. 0.1 represents the top 10% of the population ordered by risk
of diabetes). We plotted the relationship where the x axis represents
sections taken from the population ranked from the highest diabetes risk
to the lowest risk. As a greater proportion of the population is included,
the average risk in that section of the population decreases given that
lower risk groups are included. The y-axis represents the Gini coefficient
for that section of the population. We then calculated the correlation
coefficient of this relationship.

We examined how risk distribution measures would affect population
intervention strategies by calculating the benefits of a hypothetical targeted
intervention strategy using different approaches for identifying the target
group that will receive the intervention. Specifically we quantified the impact
of an intervention targeting the general population and high-risk groups
based on single or dual risk factors (obesity and overweight among non-white
ethnicities) or based on an empirically-derived risk cut-off estimated from
DPoRT 2.0. We defined population benefit as the absolute risk reduction
(ARR) in 10-year diabetes risk (absolute difference in diabetes risk before and
after the intervention) and the corresponding number of diabetes cases
prevented. The number of diabetes cases prevented was determined by
summating the ARRmultiplied by the surveyweight for all targeted individuals.
The Number Needed to Treat (NNT) is equal to one over the mean value of the
ARR in the population. We based the effect of the diabetes prevention strategy
on a plausible range seen frommeta-analyses of intervention studies involving
an intensive lifestyle intervention, typically a combination of diet and physical
activity, which would have a larger effect on reducing 10-year diabetes risk
(Gillies et al., 2008). For the intervention strategy we used a 10-year risk
reduction of 30%; although, we examined a range of effect sizes (10–60%). We
derived an optimal cut-point to identify a diabetes risk score thatwould identify
individuals or groups that would benefit from intervention. The empirically-
derived risk cut-off was based on a nonparametric discontinuity regression
function that maximizes the difference in mean ARR between those who meet
and do not meet the cut-point (Klotsche et al., 2009). This value is represented
as solid black line in Fig. 2.

Results

The updated algorithm (DPoRT 2.0) demonstrates excellent
accuracy (H–L χ2 b 20, p b 0.01?) and similar discrimination to the
original DPoRT (C-statistic = 0.77) (Fig. 1) (Appendix A). Overall,
based on the 2011 population, diabetes risk is 10% (9.6%, 10.4%)
translating to over 2.25million new diabetes cases expected in Canada
between 2011 and 2020. The 10-year baseline risk for diabetes in the
overall population and by important subgroups is reported in Table 1.
Ten-year diabetes risk varies by age, Body Mass Index (BMI), sex,
ethnicity, and quartile of risk. The absolute numbers of expected new
cases reflect variation in risk across the population, in addition to
distribution of sub-groups within the Canadian population.

Risk is variable in the Canadian population (Gini=0.48); however,
within subgroups there is a range of risk dispersions from as low as
0.11 to as high as 0.52 (Table 1). Diabetes risk is less variable within
older ages, among those that are obese, and within quartiles of risk.
High variability in 10-year diabetes risk is noted within certain ethnic
groups and among those under 45.

The degree of variability in diabetes risk is related to the magnitude
of diabetes risk such that the higher the diabetes risk score, the lower
the dispersion among the population that falls below that risk cut-off
(r=−0.99, Fig. 2). The empirically derived cut-off was determined to
be a risk of 16.5% (Fig. 3). Table 2 demonstrates the benefit in targeting
individual or dual risk factors compared to targeting based on an
empirically derived risk cut-off. Risk dispersion is lower when using
the empirically derived risk cut-off based on DPoRT compared to a
single factor target, although they represent similar proportions of the
population (20% vs. 17%). Furthermore, targeting the population that
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