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a b s t r a c t

Effects of hydrogenation treatments on the structure and the photocatalytic performance in water reduc-
tion of anatase TiO2 nanocrystals with various morphologies were studied and strong morphology/facet-
dependent effects were demonstrated. F1+ color centers and Ti3+ species are created by hydrogenation
treatments of TiO2 nanocrystals predominantly enclosed with the {001} facets (TiO2-{001}) and are
mainly located in the subsurface/bulk region; O2

� species, F1+ color centers, Ti3+ species, and Ti4+–O� rad-
ical species are created in TiO2 nanocrystals predominantly enclosed by the {100} facets (TiO2-{100})
and located from the surface to the subsurface/bulk region; and O2

� species, F1+ color centers, and Ti3+ spe-
cies are created in TiO2 nanocrystals predominantly enclosed by the {101} facets (TiO2-{101}) and
located from the surface to the subsurface/bulk region. The created defects enhance the light absorp-
tion/charge creation of TiO2 nanocrystals but also the charge recombination probabilities, and hydro-
genated TiO2-{100} and TiO2-{101} nanocrystals exhibit photocatalytic activity similar to that of the
corresponding TiO2 nanocrystals. However, an electric field was found to form between the stoichiomet-
ric surface and the defective subsurface for hydrogenated TiO2-{001} nanocrystals. This facilitates charge
separation and leads to much higher photocatalytic activity of hydrogenated TiO2-{001} nanocrystals
than of TiO2-{001} nanocrystals. These results not only shed light on the fundamental understanding
of hydrogenated TiO2 photocatalysts but also demonstrate hydrogenated TiO2-{001} nanocrystals as
highly active photocatalysts, nicely exemplifying the concept of morphology engineering as an effective
approach to both fundamental studies of oxide catalysis and optimizations of oxide catalysts.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

TiO2 has been extensively studied as a stable, low-cost, and
nontoxic photoactive material for photocatalysis, solar cells, and
so on [1–3]. However, photocatalytic applications of TiO2 are sub-
stantially restricted by the wide band gap (3.2 eV) and the rela-
tively fast electron–hole recombination [3–5]. Thus great effort
has been devoted to improving the photocatalytic performance of
TiO2.

Since the first report of black hydrogenated TiO2 photocatalysts
with significantly improved solar-driven photocatalytic perfor-
mance [6], hydrogenation treatment of TiO2 photocatalysts has
received much attention as a novel strategy for enhancing the pho-
tocatalytic performance. Various structural changes of TiO2

induced by hydrogenation treatments with different extents have

been observed and proposed to be responsible for enhanced photo-
catalytic performance [5], including the formation of a black disor-
dered surface layer surrounding a crystalline TiO2 core [7–9], the
blueshifts of the valence band maximum and formation of lower-
energy midgap states [6,7,9–12], the formation of Ti–H species
[13–15], and the formation of surface Ti3+ species and oxygen
vacancies [14,16–18]. However, serious hydrogenation treatment
of TiO2 was found to create not only surface Ti3+ species and oxy-
gen vacancies but also bulk defects, which act as charge recombi-
nation color centers and subsequently decrease the
photocatalytic performance [18–20]. Among these reported struc-
tural changes of TiO2 induced by hydrogenation treatment, defects
are of particular interest because they are one of the key parame-
ters affecting the surface chemistry and catalysis of TiO2. Thus
hydrogenation treatment seems likely to be developed as an effec-
tive strategy to control the defect structures of TiO2 and thus it is of
importance to establish the relation between hydrogenation treat-
ment and the defect structures of TiO2.
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Recently, uniform oxide nanocrystals that selectively expose
one or two types of crystal planes have been reported to exhibit
morphology-dependent surface chemistry and catalysis that exem-
plify the concept of morphology engineering as an effective
approach to both fundamental studies of oxide catalysis and opti-
mizations of oxide catalysts [21–25]. Uniform anatase TiO2

nanocrystals preferentially exposing {001} facets (denoted as
TiO2-{001}), {100} facets (denoted as TiO2-{100}), and {101}
facets (denoted as TiO2-{101}) were successfully synthesized
[26–30] and exhibited strong morphology-dependent catalytic/
photocatalytic performance [14,20,26,28,29,31–33]. A hydrogena-
tion treatment of TiO2-{001} nanosheets at 400 �C for 2 h under
10 bar pressure was reported to enhance the activity in pho-
todegradation of methylene blue under UV–visible light irradia-
tion, which was attributed to the produced Ti3+ ions and oxygen
vacancies and the subsequent improved light absorption [14].
Later, a hydrogenation treatment of TiO2-{001} nanosheets at
600 �C for longer than 10 h at atmospheric pressure was also
reported to enhance the activity in photodegradation of methylene
blue under a UV illumination by 10 times, which, however, was
attributed to the formation of hydrogenated TiO2-{001}
nanosheets with a high surface-to-bulk defect ratio and a nonuni-
form distribution of defects between the bulk and surface due to
preferential diffusion of bulk defects to the surface [20].

Although hydrogenation treatments of TiO2-{001} nanosheets
were studied, the photocatalytic reaction was limited to pho-
todegradation of methylene blue and arguments existed for the
structural factors leading to the improved photocatalytic perfor-
mance; meanwhile, systematic studies of hydrogenation treat-
ments of TiO2 nanocrystals with various morphologies have not
been reported. In this paper, we comparatively studied the defect
structures and photocatalytic performances in photocatalytic
water reduction of TiO2-{001}, TiO2-{100}, and TiO2-{101}
nanocrystals subjected to different hydrogenation treatments.
Defect structures of various TiO2 nanocrystals induced by hydro-
genation treatments depended on the morphology and exerted dif-
ferent effects on the photocatalytic activity of hydrogenated TiO2

nanocrystals in photocatalytic water reduction. The enhancement
effects of hydrogenation treatments were observed profoundly
on TiO2-{001} nanocrystals but not on TiO2-{100} or TiO2-{101}
nanocrystals.

2. Experimental

All chemical reagents were of analytical grade and were pur-
chased from Sinopharm Chemical Reagent Co.

Anatase TiO2-{001} nanocrystals were prepared by a
hydrothermal procedure [28]. Typically, 25 mL Ti(OBu)4 and 3 mL
HF aqueous solution (40 wt.%) were mixed under stirring at RT.
(Caution: Hydrofluoric acid (HF) is extremely corrosive and a con-
tact poison, and it should be handled with extreme care! Hydroflu-
oric acid solution is stored in Teflon containers in use.) The solution
was then transferred into a 50 mL Teflon-lined stainless steel auto-
clave and kept at 180 �C for 24 h. The resulted white precipitate
was collected by centrifugation, washed repeatedly with ethanol
and water, and dried at 70 �C for 12 h. The acquired powder was
dispersed in 700 mL NaOH aqueous solution (0.1 mol/L), stirred
for 24 h at RT, centrifuged, and washed repeatedly with water until
the pH value of aqueous solution was 7–8.

Anatase TiO2-{100} and TiO2-{101} nanocrystals were pre-
pared following Liu et al.’s procedure [30]. Typically, 6.6 mL TiCl4
was added dropwise into 20 mL HCl aqueous solution (0.43 mol/
L) at 0 �C. After being stirred for an additional 0.5 h, the solution
was added dropwise into 50 mL NH3 aqueous solution (5.5 wt.%)
under stirring at RT. Then the pH value of the solution was adjusted

to between 6 and 7 using 4 wt.% NH3 aqueous solution, after which
the system was stirred at RT for 2 h. The resulted precipitate was
filtered, washed repeatedly with water until no residual Cl� could
be detected, and then dried at 70 �C for 12 h to acquire Ti(OH)4 pre-
cursor. To prepare anatase TiO2-{100} nanocrystals, 2.0 g Ti(OH)4
and 0.5 g (NH4)2SO4 were dispersed in a mixture of 15 mL H2O
and 15 mL isopropanol under stirring at RT; then the mixture
was transferred into a 50 mL Teflon-lined stainless steel autoclave
and kept at 180 �C for 24 h. The obtained white precipitate was col-
lected and washed repeatedly with water. To prepare anatase TiO2-
{101} nanocrystals, 2.0 g Ti(OH)4 and 0.2 g NH4Cl were dispersed
in a mixture of 15 mL H2O and 15 mL isopropanol under stirring
at RT; then the mixture was transferred into a 50 mL Teflon-lined
stainless steel autoclave and kept at 180 �C for 24 h. The obtained
white precipitate was collected and washed repeatedly with water.

Hydrogenation treatments of anatase TiO2 nanocrystals were
carried out by heating the TiO2 nanocrystals in a quartz tube to
the desired temperature at a rate of 10 �C/min under a H2/Ar
(5%) gas flow (30 mL/min) at atmospheric pressure and then con-
tinuing the reduction process for 1 h.

Powder X-ray diffraction (XRD) patterns were recorded on a
Philips X’Pert Pro Super diffractometer with CuKa radiation
(k = 0.15406 nm) operating at 40 kV and 50 mA. Transmission elec-
tron microscopy (TEM) and high-resolution transmission electron
microscopy (HRTEM) images were acquired with a JEOL JEM-
2100F with electron acceleration energy of 200 kV. UV–vis diffuse
reflectance spectra (UV–vis DRS) were obtained on a Shimadzu
DUV-3700 spectrophotometer equipped with an integrating
sphere attachment. Raman spectra were recorded at RT with a
HORIBA LabRAM HR confocal microscope spectrograph with a
spectral resolution of 0.6 cm�1 and an excitation line at 514 nm.
Photoluminescence (PL) spectra were measured on a HORIBA Lab-
RAM HR spectrograph with a continuous wave laser (325 nm) as
the exciting source, and the signal was collected by passing
through a filter with cutoff wavelength below 380 nm. BET specific
surface areas were measured using a Micromeritics Tristar II
3020M system and the sample was degassed at 180 �C under nitro-
gen before the measurement. X-ray photoelectron spectroscopy
(XPS) measurements were performed on an ESCALAB 250 high-
performance electron spectrometer using monochromatized AlKa
(h = 1486.7 eV) as the excitation source, and the likely charging
of samples was corrected by setting the C1s binding energy of
the adventitious carbon to 284.8 eV. Electron paramagnetic reso-
nance (EPR) spectra were recorded on a JEOL JES-FA200 EPR spec-
trometer (9.063 GHz, X-band) at 130 K with employed microwave
power, modulation frequency, and modulation amplitude of
0.998 mW, 100 kHz, and 0.35 mT, respectively. Temperature-
programmed reduction (TPR) experiments were performed on a
conventional system equipped with a thermal conductivity detec-
tor (TCD). A 100 mg sample was first pretreated under Ar at 120 �C
for 60 min and cooled to room temperature, and then was heated
from room temperature to 800 �C at a linear heating rate of 10 �-
C min�1 and kept at 800 �C for 30 min in a flow of 5% H2–Ar mix-
ture at a rate of 30 mL min�1.

Experiments in photocatalytic water reduction to produce
hydrogen were performed in a top-irradiation Pyrex flask. Simu-
lated solar light (PLS-SXE300, Beijing Trusttech Co., Ltd.) was used
as the light source. Typically, 50 mg photocatalysts were dispersed
in 120 mL 20% volume methanol aqueous solution under magnetic
stirring. Prior to the irradiation, the reaction mixture was deaer-
ated repeatedly with Ar gas for 50 min to thoroughly remove air
and dissolved oxygen. A cooling-water jacket was used to keep
the photocatalytic reaction temperature at 25 �C. To evaluate the
photocatalytic hydrogen production, the gas-phase composition
of the photocatalytic reactor was analyzed every hour by extract-
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