

Available online at www.sciencedirect.com

ScienceDirect

Molecular motor MYO1C, acetyltransferase KAT6B and osteogenetic transcription factor RUNX2 expression in human masseter muscle contributes to development of malocclusion

Heather Desha, S. Lauren Grayb, Michael J. Hortonb, Gwenael Raoulc, Anthea M. Rowlerson^d, Joel Ferri^c, Alexandre R. Vieira^e, James J. Sciote^{b,*}

ARTICLE INFO

Article history: Accepted 12 March 2014

Keywords: MYO1C КАТ6В RIINX2 Malocclusion Masseter muscle

ABSTRACT

Objective: Type I myosins are molecular motors necessary for glucose transport in the cytoplasm and initiation of transcription in the nucleus. Two of these, MYO1H and MYO1C, are paralogs which may be important in the development of malocclusion. The objective of this study was to investigate their gene expression in the masseter muscle of malocclusion subjects. Two functionally related proteins known to contribute to malocclusion were also investigated: KAT6B (a chromatin remodelling epigenetic enzyme which is activated by MYO1C) and RUNX2 (a transcription factor regulating osteogenesis which is activated by KAT6B).

Design: Masseter muscle samples and malocclusion classifications were obtained from orthognathic surgery subjects. Muscle was sectioned and immunostained to determine fibre type properties. RNA was isolated from the remaining sample to determine expression levels for the four genes by TaqMan® RT-PCR. Fibre type properties, gene expression quantities and malocclusion classification were compared.

Results: There were very significant associations (P < 0.0000001) between MYO1C and KAT6B expressions. There were also significant associations (P < 0.005) between RUNX2 expression and masseter muscle type II fibre properties. Very few significant associations were identified between MYO1C and masseter muscle fibre type properties.

Conclusions: The relationship between MYO1C and KAT6B suggests that the two are interacting in chromatin remodelling for gene expression. This is the nuclear myosin1 (NM1) function of MYO1C. A surprising finding is the relationship between RUNX2 and type II masseter muscle fibres, since RUNX2 expression in mature muscle was previously unknown. Further investigations are necessary to elucidate the role of RUNX2 in adult masseter muscle.

© 2014 Elsevier Ltd. All rights reserved.

^a Orthodontic Private Practice,1649 Bluebird Canyon Drive, Laguna Beach, CA, United States

^b Orthodontic Department, Temple University, 3223 North Broad Street, Philadelphia, PA, United States

^c Oral and Maxillofacial Surgery, Université Lille Nord de France, UDSL, Roger Salengro Hospital, CHU, and INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France

^d Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK

^e Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, United States

^{*} Corresponding author at: 3223 N. Broad St, Philadelphia, PA 19140, United States. Tel.: +1 215 707 4620; fax: +1 215 707 4473. E-mail address: jjs6@dental.temple.edu (J.J. Sciote).

1. Introduction

Jaw growth imbalances often require interdisciplinary orthodontic treatment and orthognathic surgery to restore function and aesthetics to the entire masticatory unit. While much is known about the behavioural and environmental contributions to these dysplasias, the genetic aetiology of skeletal growth and adaptation of facial growth patterns remains substantially unknown.¹ A key environmental influence on jaw deformation during growth is masticatory muscle strength, which is determined by the size and proportion of muscle fibre types that associate with vertical growth.^{2,3} Sagittal jaw bone length deformations are more closely influenced by genetic variations associated with skeletal tissue growth. This is especially true for mandibular prognathism, which has an autosomal dominant inheritance with incomplete penetrance.4 Since general heritability estimates for muscle strength and bone length traits in adolescents are at >80%, 5,6 genetic contributions to growth of both jaw bones and muscles are important determining factors and the mechanisms by which deviations in craniofacial morphology develop are complex and require further investigation.

In a cross sectional study, we identified a genetic variation in Myosin 1H (MYO1H), which contributes to class III malocclusion due to mandibular prognathism. Unlike Class II myosin heavy chains (MHCs), which are responsible for muscle contraction and are the basis for classification of skeletal muscle fibre types, Class I is an unconventional myosin group of single-headed monomers involved in cellular signalling mechanisms that regulate membrane dynamics, intracellular vesicle transport and auditory mechanotransduction.8 Eight Class I myosins, designated MYO1A to MYO1H, are found in humans; some function as tension-sensors that respond to load changes by altering their ATPase activity and mechanical properties, but others have as of yet no known function.9 Among the Class I myosins, MYO1C and MYO1H are vertebrate-specific sister paralogs which evolved from a gene duplication event. 10 The molecular functions of MYO1H are not known, but there is extensive information for MYO1C since it codes for the first single-headed myosin identified in mammals.11

The MYO1C gene produces three protein isoforms through alternative splicing. Isoforms 1 and 2 can be found in both nuclear and cytoplasmic locations, but isoform 3 is restricted to nuclear functioning only. Isoforms 1 and 2 have been given the name cytoplasmic MYO1C protein and isoform 3 the name nuclear myosin 1 (NM1). The proteins have redundancy since MYO1C can replace NM1 functioning in the nucleus when NM1 is knocked out in animal experiments. 12 Isoforms 1 and 2 of MYO1C regulate glucose uptake via facilitated glucose transporter 4 (GLUT 4) in skeletal muscle by acting as a motor for movement of GLUT4-stored vesicles to plasma membranes after stimulation with insulin and contraction. 13-15 In microarray experiments we recently found that expression of GLUT4 is nearly 3× higher in masseter from open-bite compared to deep bite patients. 16 GLUT4 is expressed at higher levels in Type I, slow contracting fibres in human vastus lateralis muscle, but not in soleus or triceps brachii muscles. 17,18 It is possible that both MYO1C and GLUT4 expression in masseter

muscle may be increased in skeletal open bite due to elevated levels of Type I fibres, or hybrid fibres which express some Type I myosin in addition to other myosin heavy chain isoforms.

NM1 performs a separate and critical role in activation of transcription in the nucleus. 19 NM1 participates in the formation of the multi-protein assembly B-WICH, which is comprised of the William syndrome transcription factor complex (WSTF), Cockayne syndrome group B protein (CSB) and NM1, that is necessary for chromatin remodelling.²⁰ In this process nucleosomes are repositioned which leads to their binding with histone acetyltransfeases (HATs). The HATs confer transcriptional specificity since they function as active gene promoters.21 Using RT-PCR we recently found that expression of a HAT, K(lysine) acetyltransferase 6B (KAT6B), positively correlates with mandibular prognathism, and with Class II myosin heavy chain (MHCs type IIA and IIX) expression in masseter muscle.16 Increased expression of these fasttwitch type II MHC isoforms and type II skeletal muscle fibres enhances masticatory strength, which contributes to the development of deep bite malocclusion by decreasing vertical growth of the face.^{2,3} The association of KAT6B with mandibular prognathism could be related to its activation of the osteogenic transcription factor RUNX2²² which is required for mandibular condylar cartilage growth.²³

Given the importance of these genetic and epigenetic influences on sagittal and vertical jaw growth, we compared gene expression of MYO1H, MYO1C, KAT6B and RUNX2 in masseter muscle to malocclusion classification and muscle fibre type distribution.

2. Materials and methods

2.1. Patient population and surgical procedure

Recruitment was from orthodontic patients undergoing orthognathic surgery at the Hôpital Roger Salengro, Service de Chirurgie Maxillo-Faciale et Stomatologie at the Centre Hospitalier Universitaire de Lille in Northern France. Subject participation was in accordance with the research ethics committee's approval at Temple University and at the University of Lille. Masseter muscle samples were obtained from 28 females and 21 males (average age 22 yrs) undergoing the sagittal split procedure. The surgeries were performed by two surgeons, the Department Head and the Graduate Program Director for Maxillofacial Surgery. Surgical procedures for all subjects in this study included at least a mandibular bilateral sagittal split osteotomy using Epker's technique. This osteotomy separates the ascending branch of the mandible from the dental arch and mandibular body. The Epker technique uses structural elasticity to split the bone through the bony channel of the inferior alveolar nerve. The technique is advantageous since during the split, the inferior alveolar nerve and blood vessels are visualized and protected to avoid damage, which would affect chin and lip sensation. The bony separation is performed with a Tessier distractor in order to drive the split by using bone flexibility, which assures a more accurate and consistent sagittal split. At separation the deep portion of the masseter muscle is exposed, and some muscle fibres are

Download English Version:

https://daneshyari.com/en/article/6051190

Download Persian Version:

https://daneshyari.com/article/6051190

Daneshyari.com