

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

Paul Hooi a,*, Owen Addison b, Garry J.P. Fleming a

ARTICLE INFO

Article history: Received 23 March 2012 Received in revised form 20 April 2012 Accepted 24 April 2012

Keywords: Biaxial flexure strength Resin-based composite Soda-lime glass

ABSTRACT

Objectives: To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating.

Methods: The flexural modulus of a transparent soda-lime glass was determined by longitudinally sectioning into rectangular bar-shaped specimens and the flexural moduli of three resin-based materials (Venus Flow, Rely-X Veneer and Clearfil Majesty Posterior) was also determined. Disc shaped soda-lime glass specimens (n = 240) were divided into ten groups and were alumina particle air abraded, hydrofluoric (HF) acid-etched and resin-cement coated prior to biaxial flexure strength testing. Sample sets were profilometrically evaluated to determine the surface texture. One-way analyses of variance (ANOVA) and post hoc all paired Tukey tests were performed at a significance level of P < 0.05. The mean biaxial flexure strengths were plotted against resin-coating thickness and a regression analysis enabled estimation of the 'actual' magnitude of strengthening.

Results: The mean three-point flexural modulus of the soda-lime glass was 40.0 (1.0) GPa and the Venus Flow, Rely-X Veneer and Clearfil Majesty Posterior were 3.0 (0.2) GPa, 6.0 (0.2) GPa and 14.8 (1.6) GPa, respectively. At a theoretical 'zero' resin-coating thickness an increase in biaxial flexure strength of 20.1% (63.2 MPa), 30.8% (68.8 MPa) and 36.3% (71.7 MPa), respectively was evident compared with the control (52.6 (5.5) MPa).

Conclusions: Disc-shaped specimens cut from round stock facilitated rapid fabrication of discs with uniform surface condition and demonstrated strength dependence was influenced by precementation parameters and resin-cementation variables.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The clinical success of resin-luted porcelain laminate veneer (PLV) or dentine bonded crown (DBC) restorations is remarkable¹ and is attributed to a synergism² between the tooth preparation and the low strength ceramic which is conferred

by the resin-based luting material. There is little doubt that the long-term comprehensive prospective clinical study of 1444 Dicor glass-ceramic crowns by Malament and Socransky¹ is the 'gold standard' in terms of identifying the effect of resincementation on improved clinical performance. Unfortunately, Dicor was obsolete when the 14-year results of the study were published in 1999. Given the number of new

^a Materials Science Unit, Dublin Dental University Hospital, Lincoln Place, Trinity College Dublin, Ireland

^b Biomaterials Unit, University of Birmingham School of Dentistry, St. Chad's Queensway, Birmingham B4 6NN, UK

^{*} Corresponding author at: Materials Science Unit, Dublin Dental University Hospital, Lincoln Place, Trinity College Dublin, Ireland. Tel.: +353 1 612 7371; fax: +353 1 612 7371.

glass-ceramic and dispersion strengthened ceramics introduced to the dental market in the last 30 years, it would be unreasonable to perform similar long-term comprehensive prospective clinical studies on each ceramic type marketed. As a result, in vitro research methodologies have been devised to aid practitioners and materials scientists in assessing the appropriate ceramic material and cementation technique to improve clinical performance. When assessing the suitability of in vitro research methodologies a guest editorial in 1995 entitled 'The First Three Questions' suggested that 'in any discipline, for any project, whatever the motivation' the fundamental questions to be asked were: What do you really want to know? What do you want to measure? and What are you going to measure?.3

To provide clinical guidance and maximise the clinical performance of resin-luted PLV or DBC restorations, axisymmetric finite-element analysis of molar crowns4 and quantitative fractography of failed restorations⁵⁻⁸ identified the failure mode to be tensile and the fracture origin to be controlled by a critical flaw on the inner surface of the crown.⁴ 8 Therefore the suitability of an in vitro research methodology to investigate the underlying resin-strengthening mechanisms of PLV or DBC restorations is the replication of the clinically observed failure mode and the fracture origin.9-11 One test considered was the 'crunch-the-crown' testing methodology, however, failure was initiated at the loading contact zone on the external surface of the crown^{5,12} and therefore the clinically observed failure mode or fracture origin were not replicated in the testing protocol. In addition, the 'crunch-the-crown' test returns only the load at which failure is deemed to have occurred which is a scalar quantity that cannot be compared and does not inform the investigator about the resultant stress state within the complex geometry of the specimen which causes fracture. As a result of these inadequacies the 'crunch-the-crown' test has essentially been made redundant from the materials science testing armamentarium.13 Kelly et al.14 went further recently when after criticising the appropriateness of 'crunch-the-crown' protocols the authors stated they planned to engage editors to take an 'ethical stand against the publication of studies using "crunch-the-crown" protocols in particular". 14 Testing in biaxial flexure replicates the clinically observed failure mode and fracture origin of PLV or DBC restorations and the simplified disc-shaped specimen has a surface area to volume approximating such restorations. Using the biaxial flexure strength testing methodology, strengthening of PLV/ DBC ceramic materials with resin-cement has been shown to be insensitive to defect size9 but sensitive to macroscopic surface roughness¹⁰ and resin-cement elasticity.¹¹ Therefore, the traditionally proposed theories of crack healing¹⁵ or the crack closure stresses secondary to polymerisation shrinkage16 have been demonstrated to incompletely explain the observed strengthening.9-11 One limitation of all strength testing methodologies is in ceramic sample preparation where variability in the measured strength can be introduced during fabrication 17,18 through sintering or heat-pressing 19 and even CAD-CAM routes²⁰ which is further influenced by the technical skill of the operator. 18,21 To further understand and optimise the strengthening of PLV and DBC materials by resin-cements it would be useful to identify a substrate from

which reliable, bulk-defect-free nominally identical samples may be produced. As the important effect to be observed is surface dominated, ^{22,23} the fracture toughness of the material is less important, however, the dependence of resin-strengthening on surface effects must be analogous to the previously reported data. ^{24,25}

The aim of the current study was to determine how the variability in biaxial flexure strength of an analogue for a PLV and DBC material was influenced by precementation operative variables (alumina particle air abrasion and hydrofluoric (HF) acid-etching) and following resin-cement coating. The hypothesis tested was that the analogue material would demonstrate the same patterns of strength dependence influenced by pre-cementation parameters and resin-cementation variables characterised previously with feldspathic and glass-ceramic materials.

2. Materials and methods

2.1. Soda-lime glass flexural modulus

A transparent soda-lime glass (Glass 8337B, SCHOTT-Rohrglas GmbH, Mitterteich, Germany) was received from the manufacturers in a rod form (1.5 m length, 11.6 mm diameter). The flexural modulus of the soda-lime glass was determined by longitudinally sectioning twelve rectangular bar-shaped specimens (25 mm length, 2 mm width, 2 mm thickness) using a precision circular saw (Isomet® Low Speed Saw, Buehler, Lake Bluff, IL, USA) coupled with a diamond wafering blade (15 HC Diamond, Buehler, Lake Bluff, IL, USA) rotating at 170 rpm under water irrigation. The bar-shaped specimens were visually inspected for surface defects, with any residual flash carefully removed by hand-lapping using P400 silicon carbide abrasive paper (Buehler, Lake Bluff, IL, USA) under water lubrication and light finger pressure. The bar-shaped specimens were air-dried and stored in a desiccator at 23 \pm 1 $^{\circ}$ C for 24 h prior to testing and analysis.

The flexural modulus of the soda-lime glass was determined by loading the twelve rectangular bar-shaped specimens to failure in a three-point flexure testing configuration. The specimens were placed individually on a 20 mm support span and loaded centrally at 1 mm/min using a universal testing machine (Instron Model 5565, Instron Ltd., High Wycombe, UK). The slope of the linear elastic region of the load-deflection curves were determined and flexural moduli calculated using Eq. (1).

$$E_{B} = \frac{L^{3}}{4bd^{3}} \frac{\Delta P}{\Delta D} \tag{1}$$

where E_B is the flexural modulus, L the support span (20 mm), b the specimen width (mm), d the specimen thickness (mm) and $\Delta P/\Delta D$ is the slope of the linear elastic region of the load–deflection curve. ²⁶

2.2. Resin flexural modulus

The flexural moduli of the three resin-based materials (Venus Flow (Heraeus Kulzer GmbH, Hanau, Germany), Rely-X Veneer (3M ESPE, St. Paul, MN, USA) and Clearfil Majesty Posterior

Download English Version:

https://daneshyari.com/en/article/6053840

Download Persian Version:

https://daneshyari.com/article/6053840

<u>Daneshyari.com</u>