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a b s t r a c t

Objectives: Electroencephalography (EEG) assessment in research and clinical studies is limited by the
patient burden of multiple electrodes and the time needed to manually score records. The objective of
our study was to investigate the accuracy of an automated sleep-staging algorithm which is based on
a single bipolar EEG signal.
Methods: Three raters each manually scored the polysomnographic (PSG) records from 44 patients
referred for sleep evaluation. Twenty-one PSG records were scored by Rechtschaffen and Kales (R&K) cri-
teria (group 1) and 23 PSGs were scored by American Academy of Sleep Medicine (AASM) 2007 criteria
(group 2). Majority agreement was present in 98.4% of epochs and was used for comparison to automated
scoring from a single EEG lead derived from the left and right electrooculogram.
Results: The j coefficients for interrater manual scoring ranged from 0.46 to 0.89. The j coefficient for the
auto algorithm vs manual scoring by rater ranged from 0.42 to 0.63 and was 0.61 (group 1, j = 0.61 and
group 2, j = 0.62) for majority agreement for all studies. The mean positive percent agreement across
subjects and stages was 72.6%, approximately 80% for stages wake (78.3%), stage 2 sleep (N2) (80.9%),
and stage 3 sleep (N3) (78.1%); the percentage slightly decreased to 73.2% for rapid eye movement
(REM) sleep and dropped to 31.9% for stage 1 sleep (N1). Differences in agreement were observed based
on raters, obstructive sleep apnea (OSA) severity, medications, and signal quality.
Conclusions: Our study demonstrated that automated scoring of sleep obtained from a single-channel of
forehead EEG results in agreement to majority manual scoring are similar to results obtained from stud-
ies of manual interrater agreement. The benefit in assessing auto-staging accuracy with consensus agree-
ment across multiple raters is most apparent in patients with OSA; additionally, assessing auto-staging
accuracy limited disagreements in patients on medications and in those with compromised signal
quality.

Published by Elsevier B.V.

1. Introduction

The importance of sleep on health and well-being is well-docu-
mented [1]. The challenge for the sleep field is to not only continue
to increase the capacity for diagnostic sleep disorder testing, but
also to improve on the ongoing long-term management of sleep
disorders. Sleep disorder management might benefit from sleep
studies to assess treatment efficacy, as important risk factors can

change over time. If the burden of performing and scoring sleep
studies was reduced, it could be used for long-term assessment
and management of certain sleep and psychiatric disorders (e.g.,
insomnia, depression), including ongoing follow-up to monitor
therapy adherence and assessing the role of therapeutic side ef-
fects and symptom resolution [2].

Historically the measurement of sleep has been accomplished
with full polysomnography (PSG) in dedicated sleep laboratories.
PSG provides comprehensive information about sleep architecture
in a controlled laboratory environment. PSG will continue to be the
standard against which other methods can be evaluated. However,
full PSG is difficult to do on a repeated basis due to its complexity,
effort, and costs. The attempt to obtain the same sleep information
from more limited electroencephalography (EEG) montages, which
could be automatically scored, would greatly contribute to the ease
of including sleep analyses in multiple clinical or research settings.
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Manual sleep scoring is the gold standard, requiring trained
sleep technicians to apply visual pattern recognition to the signals.
In the best of circumstances, interrater reliability among scores ap-
proaches 0.90 and direct percent agreement approaches 80% to
85%. In typical clinical settings, these agreement metrics typically
are less even with quality oversight. Within clinical research, the
effects of lowered scoring reliability are that correlation coeffi-
cients are less robust, sample size requirements are increased, sta-
tistical power is reduced, and ultimately clinical trial costs are
higher [3].

Computerized or automated scoring is one way to overcome
some of these issues [4,5]. A previous review addressed the ques-
tion of whether or not computerized polysomnographic analysis
can reliably and accurately score sleep stages. Concerning sleep
stage validation, the literature provided evidence that computer-
ized scoring is reliable and accurate, relative to human scoring
but with some caveats. In particular, the findings are not necessar-
ily generalizable but are specific to the systems, algorithms, and
specific human scoring training that are employed [4]. The review
also suggests that the classification accuracy of any given system
must be evaluated in both normal and sleep-disordered samples
of patients. In addition, age-related changes need to be considered,
and the need for high-quality recordings is critical.

We have previously published the accuracy of an auto-staging
algorithm applied to a single channel based on the differential
recording from left and right electroocular (EOG) signals, compared
to manual sleep staging based on a full PSG montage [6]. This sin-
gle-electrode montage takes advantage of the information encoded
in the left and right EOG signals as well as the frontal EEG. The pre-
vious cross-validation was limited, as only one rater per record was
used.

Our study was designed to cross-validate our auto-staging algo-
rithm on the single EEG/EOG lead in a new test dataset using
agreement of 3 raters who scored each record as a reference. The
use of multiple human scorers in our study helped to assess inter-
rater reliability and also to improve the assessment of accuracy by
minimizing scorer bias. Comparisons were made between two sub-
groups to highlight between-laboratory differences in the interpre-
tation of the same rules applied to visual staging.

2. Methods

2.1. Study design

Our cross-sectional study was designed to compare interrater
staging across three raters and then to compare the automated
sleep-staging algorithm with majority scoring interrater
agreement.

2.2. Data selection

The entire dataset included 44 studies in subjects with a mean
age of 43 years (minimum, 22 years and maximum, 69 years) with
32% women, all undergoing full laboratory PSG. The dataset was
developed by pooling the data from two projects by the similarity
of methods, which included the use of three raters. The data used
in our study were not used to train the algorithm or previously
used in any way related to the algorithm; these data represent a
new and independent test dataset.

Group 1 records were acquired at the New York University
(NYU) School of Medicine using Sandman PSG equipment. Across
the 23 records, the average apnea–hypopnea index (AHI) was
1 + 22 events per hour and included six healthy controls, five pa-
tients with an AHI <5, five patients with mild obstructive sleep ap-
nea (OSA)(AHI, 5–15/hours), and seven patients with moderate to

severe OSA. For the sleep staging, rater 1 was an expert in sleep
staging unaffiliated with NYU (Mayo Clinic) and raters 2 and 3
were registered polysomnographic technicians (RPSGT) from NYU
with expertise in staging sleep for research studies.

Group 2 consisted of a subset of 21 records from a separate
group of 46 PSGs based on inclusion criteria requiring a minimum
of 20 epochs of REM and stage 3 sleep (N3) from the initial diag-
nostic sleep staging and an AHI <30 events per hour. Of the 21 re-
cords, nine were acquired at NYU School of Medicine using
Sandman PSG equipment and 12 were acquired at the Sleep Med-
icine Associates of New York City using Compumedics E series PSG
equipment. The combined average AHI was 8 + 7.8 events per hour
with 10 patients having an AHI <5, six patients having mild OSA,
and five patients having moderate to severe OSA. Rater 1 (boarded
in sleep) and rater 2 (RPSGT) were from University Services, Phila-
delphia, PA, and rater 3 was a RPSGT from NYU.

2.3. Manual scoring

The full PSG montage used for manual sleep staging provided
electroencephalographic recordings from C3, C4, O1, O2, and Fz
(referenced to the linked mastoids), left and right electrooculogra-
phy (EOG-L and EOG-R), and submental electromyography (EMG).
Group 1 data were scored using the criteria developed by Rechts-
chaffen and Kales (R&K) [2], as incorporated into their clinical scor-
ing protocols. Group 2 data were scored according to the 2007
American Academy of Sleep Medicine (AASM) scoring rules [3].
The AHI for both groups was based on 10-s cessation in breathing
or a 30% reduction in airflow coupled to a 4% decrease in oxyhemo-
globin saturation. Raters were blind to the automated scoring.

2.4. Automated scoring

Three major steps were applied to the auto-staging algorithm:
spectral decomposition of the input signal, computation of descrip-
tors of sleep macro- and microstructure, and classification of 30-s
epochs into one of the five stages (wake, REM, nonrapid eye move-
ment sleep stage 1 [NREM1], NREM sleep stage 2 [NREM2] or
NREM sleep stage 3 [NREM3]) (Fig. 1). The input signal is decom-
posed into delta, theta, alpha, sigma, beta, and EMG bands using
digital filters. Two signals were derived in the delta band, one from
the raw signal, and one after removal of ocular artifacts with a
median filter. The other bands were extracted directly from the
raw signal (eye movements had little impact on the signal power
>4 Hz). Descendant signals in each band were integrated and fed
to the feature extraction block.

Six descriptors of sleep macrostructure (SBI, DBI, EMI, BEI, EMG,
and �b) were derived for each 30-s epoch; their selection was
guided by the literature [7] and attempts to mitigate between-sub-
ject variability of the envelopes in each band. Three descriptors of
microstructure also were determined: number of spindles, number
of arousals, and total length of all arousals in the epoch. Spindles
and arousals were detected by contrasting short-term fluctuations
to long-term trends in the signal [8]. Spindles were identified as
0.5- to 2-s segments of the signal during which the sigma envelope
was larger than the theta, alpha, and beta envelopes and its instan-
taneous value exceeded the median value of the sigma envelope
calculated over the preceding 30 s by a factor of 2. Cortical arousals
during NREM sleep were detected as 3- to 15-s segments during
which the instantaneous alpha envelope exceeded the respective
median values calculated over the preceding 90 s by a factor of 2.

The macro- and microstructure descriptors were fed to a hierar-
chical decision tree with seven nodes. Node R1 classified epochs
into NREM cluster (NREM2, NREM3, or some NREM1) or beta-dom-
inated cluster (wake, REM, or most of NREM1). The NREM cluster
was further separated into light (NREM1/2) and deep sleep
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