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a b s t r a c t

Background: Sleep-disordered breathing (SDB) is common and is associated with increased risk for car-
diovascular disease. However, most patients remain undiagnosed due to lack of access to sleep laborato-
ries. We therefore tested the validity of a single-channel monitoring setup that captures and analyzes
breath sounds (BSs) to detect SDB.
Methods: BS were recorded from 50 patients undergoing simultaneous polysomnography (PSG). Using
custom-designed automatic software, BS were subjected to a set of pattern recognition rules to identify
apneas and hypopneas from which the acoustic apnea–hypopnea index (AHI-a) was calculated. Apneas
and hypopneas from PSG were scored blindly by three technicians according to two criteria; one relying
solely on the drop of the respiratory signal by >90% for an apnea and by 50% to 90% for a hypopnea (TV50
criteria), and another that also required a desaturation or an arousal for a hypopnea (American Associa-
tion of Sleep Medicine [AASM] criteria). PSG AHI (AHI-p) was calculated for each technician according to
both criteria.
Results: There was no significant difference between AHI-p scores according to TV50 and AASM criteria.
AHI-a was strongly correlated with AHI-p according to both TV50 (R = 94%) and AASM criteria (R = 93%).
Bland–Altman plot analysis revealed that 98% and 92% of AHI-a fell within the limits of agreement for
AHI-p according to TV50 and AASM criteria, respectively. Based on a diagnostic cutoff of AHI-p P 10
for SDB, overall accuracy of AHI-a reached 88% and negative predictive value reached 100%.
Conclusion: Acoustic analysis of BS is a reliable method for quantifying AHI and diagnosing SDB compared
to simultaneous PSG.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Sleep-disordered breathing (SDB) is associated with poor sleep
and hypersomnolence that causes daytime fatigue and increases
the risk for motor vehicle accidents [2]. Obstructive sleep apnea
(OSA), which is the most common type of SDB, also increases the

risk for developing hypertension, heart failure (HF), and stroke
[3,4], and of death from cardiovascular diseases [5]. Patients with
untreated SDB consume twice as many healthcare resources for
treatment of cardio-respiratory diseases as subjects without SDB
[6]. In contrast, treating SDB alleviates hypersomnolence, lowers
blood pressure, and improves cardiovascular function in patients
with hypertension or HF [7–11]. Therefore, widespread diagnosis
and treatment of SDB could have a considerable beneficial medical
and public health impact [12]. Unfortunately, it has been estimated
that up to 85% of individuals with SDB remain undiagnosed due to
the lack of awareness of the disease and lack of accessibility to a
sleep laboratory [2]. Therefore, there is an increasing demand for
developing reliable yet simple instruments to diagnose SDB that
are more accessible and less costly than polysommnography (PSG).

Several attempts have been made toward creating portable
monitors for SDB that are less expensive and more available than
PSG and can be used in the patients’ homes. Most of these devices
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reproduced a subset of PSG channels in a more compact form such
as nasal flow, oximetry, and thoracoabdominal effort [13]. This ap-
proach, though resulting in relatively less expensive montages
than PSG still requires a combination of channels to achieve an
acceptable accuracy [14]. However, it is well-known that the more
the channels are added to a portable monitor, the more difficult it
is to use and the higher the failure rates will be in unattended set-
tings [13].

Breath sounds (BSs) have recently emerged as a rich source of
data on respiratory patterns. Several groups have shown that
acoustic analysis of BSs can be used to identify pathological respi-
ratory sounds such as wheezing [15] and crackles [16], as well as
identification of snoring site [17,18]. In the quest for a reliable
and simple home monitor for SDB, acoustic analysis of BSs also
has been used to distinguish normal BSs and simple snoring from
those resulting from SDB [19–23]. Although such techniques could
have utility in screening for SDB, in medical practice, knowledge of
disease severity in terms of frequency of apneas and hypopneas per
hour (apnea–hypopnea index [AHI]) usually is taken into account
when recommending treatment. Hence, to improve accuracy and
reliability of acoustic analysis of BSs for diagnosing SDB, respira-
tory sound analysis should be able to identify individual apneas
and hypopneas. Therefore, the objective of our study was to devel-
op and test the accuracy of acoustic analysis of overnight BS
recordings to detect the presence and quantify the severity of SDB.

2. Methods

2.1. Subjects

We studied 50 consecutive subjects at least 18 years of age.
Subjects were referred for PSG due to a history suggestive of SDB
including at least two of the following symptoms, a history of loud
habitual snoring, restless sleep, morning headaches or excessive
daytime sleepiness. No exclusion criteria were imposed.

2.2. Acquisition of BSs

BSs were recorded by a unidirectional condenser microphone
embedded in the center of a loose fitting face frame, which kept
the microphone in a fixed location approximately 3 cm in front
of the subject’s face as shown in Fig. 1. Digitized sound data were
transferred to a computer using a USB preamplifier and audio
interface (M-Audio, Model MobilePre USB) with a sampling rate
of 22,050 Hz and resolution of 16 bits.

2.3. Polysomnography

Subjects underwent overnight PSG using standard techniques
and scoring criteria for sleep stages and arousals from sleep
[24,25]. Thoracoabdominal movements and tidal volume were
measured by respiratory inductance plethysmography (RIP) [26].
Airflow was measured by nasal pressure cannulae [26] and arterial
oxyhemoglobin saturation (SaO2) by oximetry. Apneas and hypop-
neas were scored according to two different criteria. The first was
the American Academy of Sleep Medicine (AASM) criteria which
defines an apnea as a drop in the respiratory signal, in our study
the electronic sum of thoracoabdominal movement was defined
by P90% lasting P10 s [27], and a hypopnea as an event that sat-
isfies either of the following two conditions: a drop of the respira-
tory signal by P30% lasting P10 s and accompanied by either a
P4% desaturation or terminated by an arousal, or a drop of the
respiratory signal by P50% lasting P10 s and accompanied by
either a P3% desaturation or terminated by an arousal [27]. For

the second criteria, apneas were similarly defined, but hypopneas
were defined as a 50% to 90% reduction in thoracoabdominal
sum lasting P10 s, regardless of any desaturation or arousal as
previously described [28], which we refer to as TV50. This analysis
was done because our acoustic recording setup does not include
oximetry. The AHI was quantified as the number of apneas and
hypopneas per hour of sleep. The protocol was approved by the Re-
search Ethics Board of Toronto Rehabilitation Institute.

2.4. Development of the automated algorithm

Our approach for detecting apneas and hyponeas in our study is
to scan BSs waveforms for apnea-specific and hypopnea-specific
features. The features were derived from the basic definitions of
apneas and hypopneas and their pathophysiological properties.
The algorithm was developed to detect respiratory events based
on the way a sleep technician would manually identify them in
other traces such as nasal airflow or thoracoabdominal effort (i.e.,
by finding a baseline and the characteristics of signal reductions
from the baseline). For this purpose, raw BS waveforms are prepro-
cessed to obtain a more uniform version, which is then subjected
to a set of mathematical rules each to examine a certain feature
as described hereafter.

2.4.1. Transformation of the raw acoustic signals
The aim of this step was to convert the raw acoustic signals into

waveforms proportional to BS amplitude with a uniform baseline.
To do this we used the technique of adaptive segmentation and
normalization whose mathematical and physiological bases were
previously described [29] and briefly mentioned in this section.
Initially, the envelope of BSs was formed by the summation of
absolute values of the raw sound signal samples within 400-
millisecond long moving windows (L) overlapping by 75%.1 The
resulting envelope models individual breathing cycles and is referred
to as breathing envelope (BE) as presented in Fig. 2. Transient outli-
ers in BE, such as coughs and transient loud snorting were removed.
BE models all the remaining BSs including inspiration, expiration,
and regular snoring.

Subsequently, a second envelope that traces the longer term
variations was formed by interpolating the maxima of BE to create
another envelop that is equal in length to BE. This latter is referred
to as effort envelope (EE), as illustrated in Fig. 2b. EE was

Fig. 1. Illustration of the face frame and location of the microphone.

1 The values used in this work are slightly modified from the ones used earlier in
[29]
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