
(see Fig E3, A). Similarly, mutant YFP-STIM1 (L74P) showed no
response to thapsigargin but also appeared to form constitutive
puncta, which was less distinct in appearance than that for the
D76A mutant (see Fig E3).
We compared Ca21 fluctuations in HEK293 cells transfected

with ORAI-CFP and either wild-type YFP-STIM1, mutant
YFP-STIM1 (D76A), or mutant YFP-STIM1 (L74P; see Fig
E3, B and C). Both YFP-STIM1 (D76A) and YFP-STIM1
(L74P) transfected cells had increased basal Ca21 concentrations
compared with wild-type YFP-STIM1 and reduced peak and
integral responses to CPA-induced SERCA inhibition (see
Fig E3, B and C). However, in contrast to the EF-hand mutant
YFP-STIM1 (D76A), YFP-STIM1 (L74P) did not demonstrate
reduced SOCE after CPAwashout and Ca21 restoration, suggest-
ing that the previously reported desensitization of SOCE observed
with the YFP-STIM1 (D76A) mutant does not occur with the
YFP-STIM1 (L74P) mutant form. Therefore the L74P mutation
appears to result in a distinct molecular phenotype compared
with the loss of function observed in immunodeficient patients
and the constitutive activation observed in patients with
myopathy.
This study is the first to report recessive STIM1mutations in pa-

tients presenting with AI and hypohidrosis without overt clinical
immunodeficiency or myopathy. Clinical immunologic investiga-
tions were consistent with abnormal NK cell and T-lymphocyte
function that might be expected to be associated with ongoing
clinical immunodeficiency. However, despite severely abnormal
SOCE, this was not the case in these patients. Missense mutations
affecting the EF-hand can have very different clinical phenotypes
with respect to the immune system, muscle, sweating, and enamel
formation. This has important implications for clinical evalua-
tion, as well as understanding the biological functions of STIM1.
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Antigen-presenting epithelial cells
can play a pivotal role in airway
allergy

To the Editor:
Professional antigen-presenting cells (APCs; ie, dendritic cells,

macrophages, and B cells) react against exogenous antigens and
initiate an adaptive immune response by presenting antigen
peptides in the groove of the MHC class II molecules. During
inflammation, ectopic expression of MHC class II has been
reported on cells from multiple tissues, including the nasal
mucosa, suggesting an antigen-presenting capacity of epithelial
cells (ECs).1-4 The present investigation was designed to examine
the contribution of nasal epithelial cells (NECs) to the allergic
inflammatory process. The abilities of NECs to take up antigen,
express MHC class II and costimulatory molecules, and stimulate
antigen-specific activation and proliferation of CD41T cells were
investigated by using a human mucosal specimen (see the
Methods section in this article’s Online Repository at www.
jacionline.org).

First, the cell-surface expression of MHC class II and
costimulatory molecules on human and mouse nasal epithelial
cells (MNECs) was confirmed (see Figs E1 and E2 in this article’s
Online Repository at www.jacionline.org). Then the ability of
MNECs to present the antigen ovalbumin (OVA) to naive
T cells was demonstrated. MNECs from sensitized mice
displayed an enhanced MHC class II expression on coculture
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with OT-II T cells compared with naive cells (Fig 1, A). The total
number of OT-II CD41 T cells in the same cocultures was
increased. A tendency toward an increase in CD41 T-cell counts
was also seen when sensitized T cells were used as reporter cells
(Fig 1, B). Analysis of T-cell activation revealed a pronounced
increase in the total number (see Fig E3, A, in this article’s Online
Repository at www.jacionline.org) and fraction (Fig 1, C) of
activated CD691 OT-II cells, as well as sensitized T cells, when
using sensitized MNECs as APCs. Notably, sensitized MNECs

exhibited significantly increased activating capacity, evenwithout
added OVA, which was supposedly partially due to the remaining
OVA in the MNECs from the sensitization process. In line with
this, MNECs from sensitized mice augmented the absolute
number (see Fig E3, B) and fraction (Fig 1, D) of CD441 OT-II
cells, as well as sensitized T cells, in a dose-dependent manner.
A tendency toward an increased IFN-g release was simulta-
neously seen when sensitized MNECs were used as APCs
(Fig 1, E). Finally, sensitized MNECs were unable to affect the

FIG 1. A, MHC class II expression on OVA-stimulated MNECs cocultured with T cells (4 hours). B, CD41

T-cell counts in cocultures with OVA-stimulated MNECs (24 hours). C and D, Fraction of CD691/CD41

(Fig 1, C) and CD441/CD41 (Fig 1, D) T cells after coculture with OVA-stimulated MNECs. E, INF-g release

in cocultures (24 hours). F, Cocultures with MNECs and T cells (both from sensitized mice) with anti–

MHC class II antibodies (anti-MHC II). *P < .05, **P < .01, and ***P < .001.
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