Accepted Manuscript

Silver nanoparticles embedded over porous MOF for CO_2 fixation via carboxylation of terminal alkynes at ambient pressure

Rostam Ali Molla, Kajari Ghosh, Biplab Banerjee, Md. Asif Iqubal, Sudipta K. Kundu, Sk. Manirul Islam, Asim Bhaumik

PII:	S0021-9797(16)30322-8
DOI:	http://dx.doi.org/10.1016/j.jcis.2016.05.037
Reference:	YJCIS 21281
To appear in:	Journal of Colloid and Interface Science
Received Date:	20 January 2016
Revised Date:	22 April 2016
Accepted Date:	19 May 2016

Please cite this article as: R.A. Molla, K. Ghosh, B. Banerjee, Md. Asif Iqubal, S.K. Kundu, Sk. Manirul Islam, A. Bhaumik, Silver nanoparticles embedded over porous MOF for CO₂ fixation via carboxylation of terminal alkynes at ambient pressure, *Journal of Colloid and Interface Science* (2016), doi: http://dx.doi.org/10.1016/j.jcis. 2016.05.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Silver nanoparticles embedded over porous MOF for CO₂ fixation via carboxylation of terminal alkynes at ambient pressure

Rostam Ali Molla,^a Kajari Ghosh,^a Biplab Banerjee^b, Md. Asif Iqubal,^c Sudipta K. Kundu^b, Sk. Manirul Islam,^{*,a} Asim Bhaumik,^{*,b}

^aDepartment of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India ^bDepartment of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata –700032, India

^cDepartment of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India

Abstract : Ag nanoparticles (NPs) has been supported over a porous Co(II)-salicylate metalorganic framework to yield a new nanocatalyst AgNPs/Co-MOF and it has been thoroughly characterized by powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy dispersive X-ray spectrometry (EDX), high-resolution transmission electron microscopy (HR-TEM), UV-vis diffuse reflection spectroscopy (DRS) and N₂ adsorption/desorotion analysis. The AgNPs/Co-MOF material showed high catalytic activity in the carboxylation of terminal alkynes via CO₂ fixation reaction to yield alkynyl carboxylic acids under very mild conditions. Due to the presence of highly reactive AgNPs bound at the porous MOF framework the reaction proceeded smoothly at 1 atm CO₂ pressure. Moreover, the catalyst is very convenient to handle and it can be reused for several reaction cycles without appreciable loss of catalytic activity in this CO₂ fixation reaction, which suggested a promising future of AgNPs/Co-MOF nanocatalyst.

* Address for correspondences.

E-mail: manir65@rediffmail.com (Sk. Manirul Islam); E-mail: msab@iacs.res.in (Asim Bhaumik) Download English Version:

https://daneshyari.com/en/article/606290

Download Persian Version:

https://daneshyari.com/article/606290

Daneshyari.com