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a b s t r a c t

We investigate a possibility to regularize the hydrodynamic contact line singularity in the configuration
of partial wetting (liquid wedge on a solid substrate) via evaporation–condensation, when an inert gas is
present in the atmosphere above the liquid. The no-slip condition is imposed at the solid–liquid interface
and the system is assumed to be isothermal. The mass exchange dynamics is controlled by vapor diffu-
sion in the inert gas and interfacial kinetic resistance. The coupling between the liquid meniscus curva-
ture and mass exchange is provided by the Kelvin effect. The atmosphere is saturated and the substrate
moves at a steady velocity with respect to the liquid wedge. A multi-scale analysis is performed. The liq-
uid dynamics description in the phase-change-controlled microregion and visco-capillary intermediate
region is based on the lubrication equations. The vapor diffusion is considered in the gas phase. It is
shown that from the mathematical point of view, the phase exchange relieves the contact line singularity.
The liquid mass is conserved: evaporation existing on a part of the meniscus and condensation occurring
over another part compensate exactly each other. However, numerical estimations carried out for three
common fluids (ethanol, water and glycerol) at the ambient conditions show that the characteristic
length scales are tiny.
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1. Introduction

Since the seminal article by Huh and Scriven [1], it is well
known that the standard hydrodynamics fails in describing the
motion of the triple liquid-gas–solid contact line in a configuration
of partial wetting. Their hydrodynamic model based on classical
hydrodynamics with the no-slip condition at the solid–liquid inter-
face and the imposed to be straight liquid–gas surface predicts infi-
nitely large viscous dissipation. If the normal stress balance is
considered at the free surface, such a problem has no solution at
all [2]. As an immediate consequence, a droplet cannot slide over
an inclined plate, or a solid cannot be immersed into a liquid.

Despite the fact that this paradox is known for decades, it is still
a subject of intense debate (see for instance [3]).

Contact line motion is in fact a multi-scale problem, and
microscopic effects must be considered in the vicinity of the con-
tact line to solve the above-mentioned paradox (see [4,5] for
reviews). One can make a distinction between approaches for
which the dissipation is located at the contact line itself, from
models where dissipation is assumed to be of viscous origin,
inside the liquid. In the former class of models, referred as molec-
ular kinetic theory, the contact line motion is driven by jumps of
molecules close to the contact line [6]. In the latter approach,
based on hydrodynamics, some microscopic features are to be
included. Hocking [7], Anderson and Davis [8], Nikolayev [9]
solved such a problem by incorporating the hydrodynamic slip.
In the complete wetting case, the van der Waals forces cause a
thin adsorbed film over the substrate, which relieves the singular-
ity. For such a case, Moosman and Homsy [10], DasGupta et al.
[11], Morris [12], Rednikov and Colinet [13] considered the pure
vapor atmosphere and the substrate superheating. Poulard et al.
[14], Pham et al. [15], Eggers and Pismen [16], Doumenc and
Guerrier [17], Morris [18] investigated the diffusion-limited
evaporation, when an inert gas is present in the under-
saturated atmosphere. Up to now, the case of partial wetting
and diffusion-controlled phase change received less attention.
Berteloot et al. [19] proposed an approximate solution for an
infinite liquid wedge on a solid substrate using the expression
of the evaporation flux given by Deegan et al. [20]. The singularity
is avoided by assuming a finite liquid height at a microscopic
cut-off distance, imposed a priori.

Wayner [21] suggested that the contact line could move by
condensation and evaporation while the liquid mass is con-
served. During the advancing motion, for instance, the condensa-
tion may occur to the liquid meniscus near the contact line while
the compensating evaporation occurs at another portion of the
meniscus. Such an approach seemed very attractive [22,23] since
it could provide a model with no singularity although completely
macroscopic, avoiding microscopic ingredients such as slip length
or intermolecular interactions. Rigorous demonstrations of the
fact that change of phase regularizes the contact line singularity
has been done recently by two independent groups [24–26], for
the configuration of a liquid surrounded by its pure vapor. In this
configuration, evaporation or condensation rate is controlled by
the heat and mass exchange phenomena in the liquid. Such a
situation occurs e.g. for bubbles in boiling. The Kelvin effect
has proved to be very important because it provided a coupling
between the liquid meniscus shape and mass exchange. In
the present work, we explore a possibility of relaxation of the
contact line singularity by the phase change in the contact line
vicinity in a common situation where a volatile liquid droplet
is surrounded by an atmosphere of other gases like air. This case
is more challenging than the case of the pure vapor, because the
evaporation or condensation rate is controlled by the vapor
diffusion in the gas, which results in non-local evaporation or
condensation fluxes [16].

The following physical phenomena need to be accounted for in
such a problem.

� The concentrational Kelvin effect, i.e. a dependence of the satu-
ration vapor concentration on the meniscus curvature. This
effect is expected to be important in a small region of the liquid
meniscus very close to the contact line, that we call microregion
(Fig. 1d). In this region, high meniscus curvature is associated to
the strong evaporation or condensation. The microregion size is
expected to be below 10–100 nm.

� A region of mm scale, where the surface curvature is controlled
by the surface tension, and (depending on the concrete macro-
scopic meniscus shape) gravity or inertia (Fig. 1b). The viscous
stresses associated with the contact line motion and phase
change are negligible here.

� A region of intermediate scale (Fig. 1c), where both capillary
forces and viscous stresses are important. This region is known
to be described by the Cox–Voinov relation [27,28]

h0ðxÞ3 ¼ h3V þ 9Ca lnðx=‘V Þ; ð1Þ
with h0ðxÞ the liquid slope at a distance x from the contact line
and Ca ¼ lU=r the capillary number (l is the liquid viscosity,
r the surface tension and U the contact line velocity, assumed
to be positive for the advancing contact line). It is a solution of
Stokes equations in lubrication approximation that satisfies the
boundary condition of vanishing curvature at large x. Note that
large at the intermediate scale x remains small at the macro-
scopic scale associated with the macroscopic radius L of menis-
cus curvature (defined e.g. by the drop size when controlled by
capillarity). Similarly, the curvature L�1 can be considered as
negligible with respect to curvatures induced by strong viscous
stresses in the intermediate region. Eq. (1) is valid for small cap-
illary numbers, below the Landau–Levich transition for the
receding contact line [5]. ‘V is a length of the order of the
microregion size and is called the Voinov length while hV is
the Voinov angle. The Cox–Voinov relation provides a good
description of the intermediate region because of the strong
scale separation between the capillarity controlled region and
microregion. In contact line motion models, the Voinov length
and angle can be obtained by the asymptotic matching to the
microregion, while the asymptotic matching to the capillarity
controlled region provides the following relation for the effective
contact angle heff (cf. Fig. 1b),

h3eff ¼ h3V þ 9Ca lnðL=‘V Þ: ð2Þ
The L value depends on the concrete macroscopic meniscus
shape [5]. Since we are interested in the relaxation of the contact
line singularity, the capillarity-controlled region is not consid-
ered here, and the liquid meniscus is assumed to be a liquid
wedge in both the intermediate region and microregion.

� Because of the long range of the concentration field controlled
by vapor diffusion in the air, one needs to consider one more
scale much larger than that of the liquid meniscus. In the fol-
lowing, we assume that at this scale the liquid meniscus is a
semi-infinite (x 2 ½0;1�) layer of the negligibly small height
that covers the solid substrate (Fig. 1a).

2. Problem statement

The problem to be considered is a liquid wedge posed on a flat
and homogeneous substrate moving at constant velocity U, in a sit-
uation of partial wetting. The atmosphere surrounding the sub-
strate and the liquid consists of an inert gas saturated with the
vapor of the liquid, cf. Fig. 1a (an instance of such an atmosphere
is wet air at atmospheric pressure, room temperature and relative
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