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a b s t r a c t

In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic flu-
ids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction
between two concentric cylinders under the combined influences of electrokinetic and pressure forcings.
The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic
flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary con-
dition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and
pressure gradient forcings on the fluid velocity distribution are also discussed.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

With the evolution of diagnostic tools that capture flow charac-
teristics at the microscale there has been growing evidence of wall
slip in experiments using both Newtonian and non-Newtonian flu-
ids [1]. Simultaneously, molecular dynamics has also helped ques-
tion the veracity of the no-slip law and, nowadays, the wall slip
velocity phenomenon in some fluid flows is accepted [2], especially
for viscoelastic fluids. In particular, the works of Denn [1] and Lau-
ga et al. [2] provide insights on what has already been done regard-
ing slip velocity measurements and theoretical approaches for
Newtonian and non-Newtonian fluids. Kazatchkov and Hatzikiria-
kos [3] and Hatzikiriakos [4] provide novel physical models that
are able to capture the slippery characteristics of certain viscoelas-
tic fluids. All these works concern pressure-driven flows.

For electro-osmotic driven flows the existence of wall slip has
been more readily accepted. When an electrolyte solution flows
in channels made from dielectric materials, a thin electric double
layer (EDL) is spontaneously formed in the vicinity of the wall,
where the imbalance of positive and negative ions can be used
by an applied electric potential to induce flow along the channel.
This layer is usually very small in such a way that the bulk flow
can be modeled accurately considering the linear Navier [5] slip
boundary condition at the wall [6–11].

In order to ascertain whether the proposed slip models are reli-
able, analytical solutions and numerical simulations are important
tools. Additionally, the analytical solutions can be of major impor-
tance in the verification of numerical codes. These two facts, to-
gether with the urge of understanding the electro-osmotic flow
and the slip phenomenon typical in viscoelastic fluid flows, are
the main motives for this work. On what concerns analytical solu-
tions for viscoelastic fluids with slip boundary conditions, we can
distinguish two cases: pressure-driven viscoelastic fluid motion;
viscoelastic fluid motion driven by a combination of electro-osmo-
tic and pressure forcings.

For Newtonian fluids, Ngoma and Erchiqui [12] investigated
numerically the effects of heat flux and boundary slip on electroki-
netic flows. Soong et al. [11] analyzed pressure-driven electroki-
netic flows in hydrophobic microchannels with emphasis on the
slip effects under coupling of interfacial electric and fluid slippage
phenomena while Jamaati et al. [13] studied the pressure-driven
electrokinetic slip-flow in planar microchannels. For non-Newto-
nian fluids only analytical solutions under no-slip boundary condi-
tions could be found. Zhao and Yang [14] reported a theoretical
analysis of electro-osmotic mobility of non-Newtonian fluids and
Afonso et al. [15,16] presented an analytical solution for the mixed
electro-osmotic/pressure driven flow of viscoelastic fluids in
microchannels and for the case of electro-osmotic flow under
symmetric and asymmetric zeta potential, respectively. All these
analytical solutions were derived for simple channel flows.

For an annular geometry the literature is rich in analytical solu-
tions for the pressure driven case [17–22] with applications to the
oil and gas industries. For the electro-osmotic flow through an
annulus, the applications to real life are becoming important in
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biological systems as in electrophoretic separation of proteins and
for blending chemical and biological fluids [26]. Regarding analyt-
ical studies of such flows we could only find the works of Tsao and
Kang et al. [23,24] where the electroosmotic flow of a Newtonian
fluid through an annulus was studied for high and low zeta poten-
tials, the work of Goswami and Chakraborty [25] where the
authors present semi-analytical solutions for electroosmotic flows
of Newtonian fluids with interfacial slip in microchannels of com-
plex cross-sectional shape, including an annular geometry, Jian
et al. [26] who analyzed the behavior of time periodic electro-
osmosis in a cylindrical microannulus, and more recently, Shamsh-
iri et al. [27], who studied electroviscous and thermal effects on the
electro-osmotic flow of power-law fluids through an annulus. Ana-
lytical solutions for the viscoelastic annular flow case under the
influence of both electro-osmotic and pressure driven forcings
could not be found in the literature. Given this limitation, in this
work we present a semi-analytical solution for the pure axial flow
of the Linear and Exponential PTT models [28,29] that is valid for
both no-slip and slip boundary conditions.

Although this flow is known to be of interest for industry, we
could not find any experimental data. Therefore, we derived a
general solution that can cope with various degrees of slip and
different classes of fluids. Also, the solution can be easily adapted
to other viscoelastic models.

The remaining of this paper presents the relevant set of govern-
ing equations, followed by their solutions. A discussion of the
effects of the various relevant dimensionless parameters upon
the flow characteristics closes this work.

2. Governing equations

The flow of interest is governed by the continuity equation,

r � u ¼ 0 ð1Þ

and by the general Cauchy momentum equation,

q
@u
@t
þ qr � uu ¼ �rpþr � sþ qeE ð2Þ

where u is the velocity vector, p is the pressure, q is the density and
qeE represents the electrical force per unit volume acting upon the
ions in fluid. This force depends on E, the applied external electric
field, and on qe, the net electric charge density. This charge density
distribution is a consequence of the distribution of the spontane-
ously formed electric double layers, which are assumed here not
to be affected by the imposed electric field. The deviatoric stress
tensor, s, describes the fluid rheological behavior here given by
the simplified Phan-Thien-Tanner (sPTT) model [28,29],

f ðtrsÞsþ k
@s
@t
þ u � rs� ½ðruÞT � sþ s � ru�

� �

¼ gðruþ ðruÞTÞ ð3Þ
where g is the polymer viscosity coefficient, k is the relaxation time
and f ðtrsÞ is a function depending on the trace of the stress tensor
specifying the various versions of this class of models [28,29],

f ðtrsÞ ¼
1þ ek

g skk linear

exp ek
g skk

� �
exponential

8<
: ð4Þ

As for the boundary conditions, the no-slip boundary condition at
the wall is expressed as u ¼ 0, whereas the linear Navier slip law
[5], is given by

uslip ¼ �Lsrz ð5Þ

where L is the slip coefficient and srz is the wall shear stress. For the
inner cylinder wall the plus sign is considered, while for the outer
cylinder wall the minus sign is used.

3. Semi-analytical solution

We assume the flow between the two concentric cylinders is fully
developed, with the streamwise velocity component in the z direc-
tion (the direction of the axes of the cylinders) only depending on
the radial coordinate, r. As shown in Fig. 1 the outer cylinder has a
radius R, and the radius of the inner cylinder is given by aR with
0 < a < 1. The gap between the two cylinders is d ¼ Rð1� aÞ. We
further assume that there is no rotation, that the flow is axisymmet-
ric and it is fully developed. For such conditions, continuity, momen-
tum and the constitutive equations can be further simplified.

The axial momentum equation in cylindrical coordinates is gi-
ven by,

1
r

dðrsrzÞ
dr

¼ �qeEz þ p;z ð6Þ

where p;z is the constant pressure gradient in the z direction, srz is
the non-zero shear stress and Ez � �dU=dz with U ¼ wþ /, where
/ is the applied streamwise potential and w is the equilibrium/in-
duced potential across the cylinders’ gap, associated with the
interaction between the ions of the fluid and the dielectric wall.
The charge density, qe, is related to the electric potential by
qe ¼ ��j2wðrÞ assuming the Debye-Hückel approximation (at room
temperature this limits the potential at the wall to values much
smaller than 26 mV), and the induced electric field is given by the
solution of the following differential equation [23],

1
r

d
dr

r
dw
dr

� �
¼ j2w ð7Þ

where j2 is the Debye-Hückel parameter. For the boundary condi-
tions wðaRÞ ¼ fi and wðRÞ ¼ fo, the solution of Eq. (7) is given by
[23],

wðrÞ ¼ I0ðjrÞ½foK0ðajRÞ � fiK0ðjRÞ� þ K0ðjrÞ½fiI0ðjRÞ � foI0ðajRÞ�
I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ

ð8Þ
where I0ð:Þ and K0ð:Þ are the modified Bessel functions of first and
second kind, respectively.

The induced electric potential is now easily computed by
qe ¼ ��j2wðrÞ with wðrÞ given by Eq. (8), where � is the dielectric
constant of the fluid.

Integration of Eq. (6) results in the following expression for the
shear stress,

srz ¼
rp;z
2
þ �jEz

K1ðjrÞ½�fiI0ðjRÞ þ foI0ðjaRÞ�
I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ þ

�j2Ezr
2

�
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I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ þ c1

r
ð9Þ

where 0F1 2; jr
2

� �2
� �

is the confluent hypergeometric limit function,
which is defined as [30,31]

0F1ð2; zÞ ¼
X1
k¼0

zk

k!ðkþ 1Þ! ð10Þ

and c1 is the constant of integration that can be determined assum-
ing that srz ¼ 0 for r ¼ bR with a < b < 1,

c1 ¼ �
ðbRÞ2p;z

2
� �jEzbR

K1ðjbRÞð�fiI0ðjRÞ þ foI0ðjaRÞÞ
I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ

� �j
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I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ ð11Þ

This implies that b has to be determined as part of the solution.
For the pure axial annular flow the shear stress component is gi-

ven by,

f ðszzÞsrz ¼ g
du
dr

ð12Þ
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