
A program for the fitting of Debye, Cole–Cole, Cole–Davidson,
and Havriliak–Negami dispersions to dielectric data

Constantino Grosse
Departamento de Física, Universidad Nacional de Tucumán, Avenida Independencia 1800, 4000 San Miguel de Tucumán, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Rivadavia 1917, 1033 Buenos Aires, Argentina

a r t i c l e i n f o

Article history:
Received 25 October 2013
Accepted 12 December 2013
Available online 23 December 2013

Keywords:
Levenberg–Marquardt algorithm
Debye
Cole–Cole
Cole–Davidson
Havriliak–Negami
Non-linear parameter fitting
Dielectric dispersion

a b s t r a c t

The description and interpretation of dielectric spectroscopy data usually require the use of analytical
functions, which include unknown parameters that must be determined iteratively by means of a fitting
procedure. This is not a trivial task and much effort has been spent to find the best way to accomplish it.

While the theoretical approach based on the Levenberg–Marquardt algorithm is well known, no freely
available program specifically adapted to the dielectric spectroscopy problem exists to the best of our
knowledge. Moreover, even the more general commercial packages usually fail on the following aspects:
(1) allow to keep temporarily fixed some of the parameters, (2) allow to freely specify the uncertainty
values for each data point, (3) check that parameter values fall within prescribed bounds during the fit-
ting process, and (4) allow to fit either the real, or the imaginary, or simultaneously both parts of the com-
plex permittivity.

A program that satisfies all these requirements and allows fitting any superposition of the Debye, Cole–
Cole, Cole–Davidson, and Havriliak–Negami dispersions plus a conductivity term to measured dielectric
spectroscopy data is presented. It is available on request from the author.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

A recurring problem present in all dielectric spectroscopy labo-
ratories is the necessity to describe measured data using analytical
functions. These expressions, arising from theoretical or empirical
models, include unknown parameters that must be determined by
means of a fitting procedure. If the model expression depends non-
linearly on at least one of the unknown parameters, an iterative
procedure becomes necessary to determine the best parameter
set. This is not a trivial task and much effort has been spent to find
the best way to accomplish it.

One of the best widely known solutions is presented in the Ref.
[1], which discusses in detail the Levenberg–Marquardt algorithm
that iteratively finds the parameter values that best fit the data,
starting with guess values of these parameters provided by the
user. It also includes the source code that makes it possible to
implement a program that makes the calculations.

While this constitutes, in principle, an excellent way to solve
the above mentioned problem, a series of difficulties arise in
practice:

(1) The code is written in the form of a calling program (xmrq-
min) and a series of subroutines (mrqmin, mrqcof, gaussj,
covsrt, fgauss, gasdev, and ran1). These subroutines are used

by many other programs in the book so that they have a gen-
eral character and behave as black boxes. The whole system
works, but it is not easy for a non-professional programmer
to fully understand the code. Unfortunately, this becomes
necessary since the code needs to be modified in order to
make the program perform a function not envisioned by
the authors.

(2) The calling program accomplishes two tasks: it first gener-
ates an artificial data set using an analytical expression
together with parameter values input by the user and ran-
dom ‘‘noise’’ used to simulate real data. It then determines
the parameter values that best fit this data. Therefore, in
order to use the code it is first necessary to strip from the
calling program all the code used to generate the artificial
data and then add the code required to read real data from
a file. It is also necessary to add a subroutine corresponding
to the model expression chosen by the user to describe the
experimental data.

While these modifications required to perform the fitting pro-
cess are not especially difficult, they are usually not sufficient.
The main reasons for this are the following:

(3) Fixed parameters. When the model function includes many
parameters, the fitting process becomes a complex task:
the final parameters strongly depend on the initial guess

0021-9797/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcis.2013.12.031

E-mail address: cgrosse@herrera.unt.edu.ar

Journal of Colloid and Interface Science 419 (2014) 102–106

Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

www.elsevier .com/locate / jc is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcis.2013.12.031&domain=pdf
http://dx.doi.org/10.1016/j.jcis.2013.12.031
mailto:cgrosse@herrera.unt.edu.ar
http://dx.doi.org/10.1016/j.jcis.2013.12.031
http://www.sciencedirect.com/science/journal/00219797
http://www.elsevier.com/locate/jcis


values, the iteration often diverges, or it converges to a set
that is clearly wrong. This leads to the necessity to include
in the program the possibility to perform an initial fitting
with some of the parameters kept at fixed values. This
requirement is then progressively released in successive
program runs. Fortunately, this capability is included in
the original code.

(4) Parameter uncertainties. The obtained results also depend
quite strongly on the uncertainties of each measured data
point. While the program uses uncertainty values, it
assumes that these uncertainties are proportional to each
data value with a proportionality constant that is the same
for all data points. While this assumption might be adequate
in some cases, a practical program should allow the free
input of the data uncertainties (using information provided
by the manufacturer of the measuring instrument, for
example).

(5) Parameter bounds. In many cases, the parameters included
in theoretical or empirical models have natural bounds:
must be positive, or smaller than one, for example. It is then
necessary to include these bounds in the fitting process in
order to avoid unacceptable solutions. This capability is
not included in the original code and should be
implemented.

(6) Complex data. Experimental impedance spectroscopy data
usually includes both the real and the imaginary parts of
the measured magnitude. It is therefore essential that the
fitting program is able to determine the goodness of fit from
the distances on the complex plane between the measured
and the calculated points rather than just their real or their
imaginary parts. Again, this capability is absent in the origi-
nal code.

In this work we present a program: DielParamFit.exe, that al-
lows to fit any superposition of the Debye, Cole–Cole, Cole–David-
son, and Havriliak–Negami dispersions plus a conductivity term to
measured dielectric spectroscopy data. The program is based on
the theory, not the code, presented in Ref. [1], and includes all
the above-mentioned extensions. A detailed account of the pro-
gram implementation is presented as Supplementary material.
The executable program is available on request from the author
at cgrosse@herrera.unt.edu.ar.

2. Theory

We consider a data set made of N measured data points (xi, yi)
with 1 6 i 6 N, where x and y are the independent and depen-
dent variables, respectively. We want to represent these data by
means of an analytical expression y(x) that depends on M parame-
ters ak with 1 6 k 6 M. The problem is to determine the set of ak

parameter values that leads to the best agreement between the
measured and the calculated data points. More precisely, we wish
to determine the parameter set that minimizes the function:

v2 ¼
XN

i¼1

yi � yðxiÞ
ri

� �2

ð1Þ

Note that this expression, called Chi-squared, also depends on
the data point uncertainties ri.

We so set to zero the derivatives of the above expression with
respect to the parameters ak, which leads to M equations:

XN

i¼1

yi � yðxiÞ
r2

i

@yðxiÞ
@ak

� �
¼ 0 ð2Þ

In the case that all the model parameters are linear:

yðxÞ ¼
XM

k¼1

ak
@yðxÞ
@ak

� �
ð3Þ

Eq. (2) transforms into the final expression

XM

j¼1

ðakjajÞ ¼ bk ð4Þ

where

bk ¼
XN

i¼1

yi

r2
i

@yðxiÞ
@ak

� �
ð5Þ

akj ¼
XN

i¼1

1
r2

i

@yðxiÞ
@ak

@yðxiÞ
@aj

� �
ð6Þ

Eq. (4) constitutes a set of M linear equations that can be solved
for the parameters ak using any of the standard methods.

However, if at least some of the parameters are non-linear, Eq.
(3) and following expressions no longer hold, so that a different ap-
proach must be used. Imagine a plot of v2 in the M parameter
space. Since it is impossible, in practice, to systematically explore
all the resulting ‘‘surface’’ looking for the lowest minimum, we
have to start at an initial guess point and follow a path that des-
cends to the closest minimum. Note that the outcome of this ap-
proach depends on the coordinates of the initial guess point. A
bad guess could easily lead to a local minimum rather than the
lowest minimum. Also note that the whole ‘‘surface’’ depends on
the values of the uncertainties ri as also do the coordinates of
the local minimum.

The problem is, therefore, to find a systematic algorithm that
finds the way from the initial guess point to the local minimum.
Any intermediate stage of the process is characterized by the posi-
tion vector ~a in the parameter space, which has the components
a1 . . .aM. We seek to determine the next point ~aþ d~a that is closer
to the local minimum. The simplest approach is the steepest des-
cent method that consists in following the direction of minus the
gradient of v2:

dak ¼ �constant
@v2

@ak
ð7Þ

The constant in this expression should be sufficiently small so
that the downhill direction does not change too much over a single
step. This method is good for points far from the minimum but be-
comes extremely slow close to the minimum where the gradient
tends to zero.

Close to the minimum we can write down the second order
expansion of v2:

v2ð~aþ d~aÞ ¼ v2ð~aÞ � 2
XM

k¼1

ðbkdakÞ þ
XM

k¼1

XM

j¼1

ðakjdakdajÞ þ . . . ð8Þ

where

bk ¼ �
1
2
@v2

@ak
ð9Þ

akj ¼
1
2

@2v2

@ak@aj
ð10Þ

Eq. (8) makes it possible to calculate the gradient of v2 at~aþ d~a:

@v2

@ak

����
~aþd~a

¼ �2bk þ 2
XM

j¼1

ðakjdajÞ ð11Þ

At the minimum the gradient should vanish so that the last
parameter change d~a required to attain the minimum is deter-
mined by:

C. Grosse / Journal of Colloid and Interface Science 419 (2014) 102–106 103



Download English Version:

https://daneshyari.com/en/article/607360

Download Persian Version:

https://daneshyari.com/article/607360

Daneshyari.com

https://daneshyari.com/en/article/607360
https://daneshyari.com/article/607360
https://daneshyari.com

