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a b s t r a c t

Forces and aggregation rates involving spherical particles are studied numerically within the theory of
Derjaguin, Landau, Verwey, and Overbeek (DLVO) for asymmetric and mixed electrolytes. Thereby, the
double layer interactions are treated at the Debye–Hückel (DH) and Poisson–Boltzmann (PB) levels.
The DH model is applicable for weakly charged systems, and effects of ion valence enter only implicitly
through the ionic strength. The PB model is necessary for more highly charged systems, and depends on
the actual ionic composition. One finds that forces in asymmetric electrolytes at fixed ionic strength
weaken when the valence of the counterions is increased or when the valence of the coions is decreased.
In symmetric electrolytes, the effect of counterions is more important than the one of the coions. For
weakly charged systems, the critical coagulation concentration (CCC) decreases with the square of the
valence in symmetric electrolytes, while this decrease is weaker in asymmetric ones. With increasing
charge density, the dependence of the CCC on the valence becomes stronger, but the classical Schulze–
Hardy decrease with the sixths power of the valence is only recovered for unrealistically high charge den-
sities. Mixtures of electrolytes are treated within the same framework, and one observes that already
small amounts of multivalent ions affect the system considerably. An empirical mixing rule is proposed
to describe the calculated CCCs.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Poisson–Boltzmann (PB) theory represents the cornerstone
of our quantitative understanding of interactions between charged
surfaces in aqueous solutions [1,2]. This theory is often capable to
rationalize experiments with astonishing accuracy [3–12]. For
example, directly measured forces across electrolyte solution be-
tween mica sheets or involving colloidal particles can be described
with PB theory quantitatively, especially at larger distances [3–5].
When the interaction forces obtained from PB theory are added to
the omnipresent van der Waals forces, one arrives at the classical
theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO)
[1,2,13,14]. The DLVO theory is equally capable to describe the
transition between repulsive and attractive regime at higher salt
levels as well as particle aggregation rates in colloidal suspensions
[7–9,11,15]. While PB was mostly used in the presence of monova-
lent electrolytes [3–10,15], recent findings indicate this theory to
be applicable in the presence of multivalent ions as well [10–12].

While the PB model normally relies on a numerical solution of a
non-linear differential equation [9,10,16,17], Debye–Hückel (DH)
theory often permits analytical solutions due to its linearity

[2,18,19]. However, the DH theory is only valid for sufficiently
low potentials, and in this regime it is precisely equivalent to PB
theory. However, the range of validity of DH theory depends on
type of ions, and its range of validity is smaller in the presence of
multivalent ions than for monovalent ones. Nevertheless, DH the-
ory may be sufficiently accurate to describe the relevant interac-
tions properly, especially at larger distances and when combined
with the notion of the effective (or renormalized) potential or
charge [20,21].

Double layer forces deduced from PB theory may strongly de-
pend on the boundary conditions, especially at shorter distances
[2,18,19]. Normally, the constant charge (CC) and constant poten-
tial (CP) boundary conditions are considered. However, these are
only two special cases. Upon approach, the surfaces will normally
regulate their charge and the nature of this regulation strongly
influences forces at shorter distances [18,19,22]. This regulation
originates from shifts in the adsorption equilibrium of charged ions
upon approach due to the deformation of the diffuse layer. While a
detailed treatment of this phenomenon requires a consideration of
the adsorption equilibrium of all the relevant ions, a simpler
description is possible within the constant regulation (CR) approx-
imation [23]. This approximation stipulates that charge regulation
effects can be considered to first order in terms of a constant inner
capacitance of the adsorbed layer. While this approach is only
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appropriate at larger distances, it provides a simple framework to
quantify regulation effects in actual systems. Charge regulation ef-
fects were equally suggested to modify the shift of the critical
coagulation concentration (CCC) with the valence of the counteri-
ons [24–26].

Due to their relative simplicity, DH and PB descriptions have
been used to address a wide range of electrostatic phenomena.
Many researchers have discussed the effect of surface charge het-
erogeneities [27–30]. The situation can be treated analytically on
the DH level on a regular lattice, and it was found that such charge
heterogeneities can induce additional attractive forces [27,28]. The
range of these additional interactions is given by the lattice spacing
at low salt levels, but this interaction becomes screened at higher
salt levels. These effects were also treated numerically within the
surface element approximation [29,30]. Three-body forces repre-
sent another aspect studied within the PB approximation
[17,31,32]. While DH theory predicts pair-wise additive forces
due to its linearity, one obtains three-body forces on the PB level.
These forces turn out to be attractive, and their importance was
confirmed experimentally [31,32].

The classical PB model neglects finite ion size and relies on a
mean-field description of the electrolyte solution [2,33–36]. Fi-
nite-size effects are commonly approximated by introducing a
Stern layer or by treating the finite size of the ions in a self-consis-
tent fashion [37–39]. Detailed analysis reveals that the mean-field
approximation inherent to the PB model may fail in the case of
strong electrostatic coupling, which becomes important for highly
charged surfaces, multivalent ions, or non-aqueous electrolytes of
low dielectric constant [25,26,33–36]. These findings triggered re-
newed interest in adsorption processes involving multivalent ions
and how their presence influences forces between colloidal parti-
cles [36,40,41].

In spite of these shortcomings, PB theory is expected to be
applicable at larger distances from the surface, where high electri-
cal potentials and crowding effects have decayed away. In this
case, however, the relevant parameters entering the PB theory,
such as the surface potential, surface charge, or regulation capaci-
tance, refer to the entire surface layer sandwiched between the
plane of origin of the diffuse layer and the actual interface. In this
situation, one also refers to effective (or renormalized) charge or
diffuse layer potential. The experimental determination of such
effective potentials seems relatively straightforward with electro-
kinetic techniques [2], scattering experiments [20], or direct force
measurements [4,5]. Direct force and aggregation measurements
suggest that PB theory represents a good approximation down to
distances of few nm in the presence of monovalent electrolytes
[3–10]. Recently, it was even reported that PB theory could be
applicable in the presence of multivalent ions at larger separation
distances [10–12]. On the theoretical side, however, it seems not
quite clear at which distances ion correlations and crowding effects
can be neglected and the PB model becomes valid. Especially, it has
not yet been established how this region of validity depends on the
valence of the ions present. The PB theory might have therefore a
much wider range of applicability than expected so far. This fact
would substantially simplify the analysis of interaction forces in
such systems at larger distances. This possibility would be rather
intriguing, since accurate predictions based on current theories
including ion correlations normally rely on time-consuming com-
puter simulations [25,26,35,36,42].

In the present article, we therefore analyze forces and aggrega-
tion rates calculated within the PB model in the presence of asym-
metric and mixed electrolytes, especially considering multivalent
ions. The available literature hardly touches upon this topic [43–
45]. We discuss the effect of the non-linearity inherent to the PB
description and will demonstrate that the DH theory remains good
approximation in many situations. Moreover, we analyze the

dependence of the CCC on the valence of the counterion z. We find
that the popular Schulze–Hardy dependence of z�6 can be only
recovered for surfaces with unrealistically high charge densities,
and that rather the weaker z�2 dependence predicted by DH theory
should be expected. Since PB theory is likely to be also applicable
in the presence of multivalent ions, it is essential to analyze the
predicted dependencies on the forces and aggregation rates in
detail.

2. Modeling

The interactions are modeled with the PB and DH models in the
symmetric plate–plate geometry. These results are transformed to
the sphere–sphere geometry by means of the Derjaguin approxi-
mation, in order to obtain experimentally accessible force profiles
and aggregation rates.

2.1. Poisson–Boltzmann theory

Let us consider an electrolyte solution between two charged
plates containing different types of ions of concentration ci and
charge zi expressed in units of the elementary charge q. The electric
potential w(x) depends on the position x, whose origin is taken at
the mid-plane, and satisfies the PB equation [1,2]

d2w

dx2 ¼ �
q

e0e
X

i

zicie�zibqw ð1Þ

where the sum runs over all types of ions i, and e0 is the dielectric
permittivity of vacuum, e the dielectric constant, and b = 1/(kBT) the
inverse thermal energy. In the latter equation T is the absolute tem-
perature and kB is the Boltzmann constant.

For large plate separations Eq. (1) can be integrated once, and
one obtains for any of the two plates their surface charge density

r ¼ � 2kBTe0e
X

i

ci e�zibqwD � 1
� �" #1=2

ð2Þ

where wD is the surface (or diffuse layer) potential for the isolated
plane and ± refers to positive and negative surface potentials. The
differential diffuse layer capacitance of the isolated layer can be ob-
tained from the derivative

CD ¼
@r
@wD

¼ � q2e0e
2kBT

� �1=2

X
i

zici e�zibqwD � 1ð Þ

X
i

ci e�zibqwD � 1ð Þ
" #1=2 ð3Þ

where ± has the same meaning as in Eq. (2). Within the constant
regulation (CR) approximation, the solution of the PB equation in
the plate–plate geometry must be found subject to the boundary
conditions [23]

�e0e
dw
dx

����
x¼�h=2

¼ r� CI wð�h=2Þ � wD½ � ð4Þ

where the plates are situated at x = ±h/2 and CI is the inner layer
capacitance. The inner capacitance is normally replaced by the reg-
ulation parameter defined as

p ¼ CD

CD þ CI
ð5Þ

One obtains constant charge (CC) boundary conditions for p = 1
and constant potential (CP) boundary conditions for p = 0. The reg-
ulation parameter may become negative, but this situation is prob-
ably not too important in practice [22].
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