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a b s t r a c t

We derive the trapping energy of a colloidal particle at a liquid interface with contact angle h and prin-
cipal curvatures c1 and c2. The boundary conditions at the particle surface are significantly simplified by
introducing the shift e of its vertical position. We discuss the undulating contact line and the curvature-
induced lateral forces for a single particle and a pair of nearby particles. The single-particle trapping
energy is found to decrease with the square of both the total curvature c1 + c2 and the anisotropy
c1 � c2. In the case of non-uniform curvatures, the resulting lateral force pushes particles toward more
strongly curved regions.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Colloidal particles trapped at a liquid phase boundary are sub-
ject to capillary forces which induce pattern formation and direc-
ted motion [1–3], and contribute to stabilize Pickering emulsions
and particle aggregates [4,5]. Such microstructures affect the
mechanical and flow behavior of liquid and gel phases [6], which
in turn are relevant for material properties and biotechnological
applications [7]. In many instances, the particles are trapped at
curved liquid interfaces; rather surprisingly, even for spherical par-
ticles the influence of curvature on capillary forces is not fully
understood at present.

At a flat interface, capillary phenomena arise from normal
forces induced by the particle’s weight or charge, or from geomet-
rical constraints due to its shape [8,9]. As a simple example, an oat
grain floating on a cup of milk is surrounded by a meniscus that re-
sults from the its weight and buoyancy; the superposition of the
dimples of nearby grains reduces the surface energy and thus
causes aggregation. Charged beads exert electric stress on the
interface. The meniscus overlap of nearby particles causes a repul-
sive electrocapillary potential [10,11], whereas beyond the super-
position approximation, a significantly larger attractive term is
found [12–14]. In the absence of gravity and electric forces, capil-
lary phenomena still occur for non-spherical particles: a capillary
quadrupole may arise from surface irregularities [15,16], pinning
of the contact line [17], and for ellipsoids [18–21], and favors the
formation of clusters with strong orientational order.

A more complex situation occurs for interfaces with principal
curvatures c1 and c2. The superposition of the weight-induced

meniscus and the intrinsic curvature results in a coupling energy
that is linear in the total curvature H = c1 + c2. Its spatial variation
gives rise to a lateral force that drags a colloidal sphere along the
curvature gradient [22,23]. Non-spherical particles interact
through their capillary quadrupole with the curvature difference
dc = c1 � c2, and thus experience both a torque and lateral force
[24]. The latter is well known from the locomotion of meniscus-
climbing insects and larvae, which bend their body according to
the local curvature such that the capillary energy overcomes grav-
ity [25,26]; through a similar effect, ellipsoidal particles prevent
ring formation of drying coffee stains [27,28]. A recent experiment
on micro-rods trapped at a water–oil meniscus illustrates both
rotational and translational motion driven by curvature [3].

In this paper, we evaluate the geometrical part of the trapping
energy of a spherical particle on a curved interface; thus we con-
sider only terms that arise from the interface profile but are inde-
pendent of body forces such as weight and buoyancy. Previous
papers considered limiting cases such as a minimal surface
(H = 0) [29], a spherical droplet (dc = 0) [30,31], or a cylindrical
interface (H = dc) [32]; yet a comprehensive picture is missing so
far. Here we treat the general case illustrated in Fig. 1, where both
H and dc are finite, and obtain the trapping energy in a controlled
approximation to quadratic order in the curvature parameters. We
resort to the usual assumptions of constant contact angle h, curva-
ture radius much larger than the particle size, and small meniscus
gradient.

As an original feature of the formal apparatus, we introduce the
curvature-induced shift e of the vertical particle position as an
adjustable parameter, in addition to the amplitude n2 of the quad-
rupolar interface deformation. As a main advantage, the boundary
conditions at the contact line separate in two independent equa-
tions for e and n2, which are readily solved and provide a simple
physical picture for the effects of the two curvature parameters.
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The paper is organized as follows. Section 2 gives a detailed der-
ivation of the energy functional and the deformation field n(r).
From the usual variational procedure we find in Section 3 the en-
ergy as a function of the curvature parameters and the unknowns
e and n2; then the energy is minimized with respect to the un-
knowns e and n2. In Section 4 we show that the solution satisfies
Young’s law at the three-phase boundary. In Section 5 we compare
the trapping energy with previous work, and discuss the contact
line and curvature-induced forces. Section 6 contains a brief
summary.

2. Trapping energy

Here we derive the expression for the trapping energy and then
evaluate it explicitly to quadratic order in the curvatures. It con-
sists of the surface energies of all phase boundaries and the work
done by the Laplace pressure both on the liquid interface and on
the area occupied by the particle.

First consider a particle dispersed in the liquid phase with the
smaller surface tension cm = min (c1,c2). The total energy

cS0 þW0 þ cm4pa2;

accounts for the interface area S0, the work W0, and for the particle
surface 4pa2, as illustrated in Fig. 3a.

A particle approaching the interface gets trapped if the surface
tensions satisfy the inequality jc1 � c2j < c. The situation shown in
Fig. 3 corresponds to cm = c2. The total energy

cSþW þ c1S1 þ c2S2;

consists of a term cS proportional to the area of the liquid interface,
the work W, and the particle segments in contact with the two
phases, c1S1 + c2S2.

The trapping potential is given by the energy difference of these
two situations,

E ¼ cðS� S0Þ þW �W0 þ c1S1 þ c2S2 � cm4pa2: ð1Þ

As illustrated in Fig. 2b, S is smaller than the unperturbed area
S0. Since Young’s law needs to be satisfied everywhere along the
three-phase contact line, S may show a significantly more complex
profile than S0.

In this section we evaluate the trapping energy to second order
in the curvature. There are two issues requiring particular care.
First, both the particle surface and the liquid interface contribute
linear terms which, however, cancel each other. Second, at qua-
dratic order, there are various contributions from the liquid inter-
face, the area occupied by the particle, and the work done by the
Laplace pressure; these terms carry comparable prefactors but
opposite sign. The main result is given in Eq. (18) below.

2.1. Flat interface H = 0 = dc

We briefly recall the well-known results for zero curvature
w0 = 0, where both S0 and S are flat [1]. Imposing local mechanical

equilibrium relates the surface tension parameters to the contact
angle h at the three-phase line in terms of Young’s law

c1 � c2 ¼ c cos h: ð2Þ

Then the area of the liquid interface is reduced by

S� S0 ¼ �pr2
0;

and the segments of the particle surface read

S1 ¼ 2pa2 � 2paz0; S2 ¼ 2pa2 þ 2paz0:

Here and in the following we use the vertical and radial coordi-
nates of the contact line,

z0 ¼ a cos h; r0 ¼ a sin h;

as illustrated in the left panel of Fig. 2. With Young’s law one finds
for a flat interface [1],

EF ¼ �pa2cð1� j cos hjÞ2: ð3Þ

The trapping energy vanishes for contact angles h = 0 and h = p.
For jc1 � c2j > c Young’s law has no solution, meaning that there is
no stable trapped state. In the remainder of this section we con-
sider corrections to EF that arise at a curved interface.

2.2. Curved interface without particles

Now we consider the case of finite curvature. In Monge repre-
sentation, w0(u,v) gives the interface height with respect to a tan-
gent plane with coordinates u and v. The energy consists of two
terms,

Fig. 1. Three-phase boundary of a spherical particle at a liquid interface with
curvatures c2 ¼ � 1

2 c1. The contact line is not a circle but undulates in space.

(b)

(a)

Fig. 2. Surface and interface areas contributing to the trapping energy in Eq. (1).
The upper liquid is labeled ‘‘1’’ and the lower ‘‘2’’. (a) The particle is in the phase of
lower surface energy (here c2 < c1); the liquid interface of area S0 is described by (6).
(b) Trapped state. The presence of the particle reduces the area of the liquid phase
boundary to the value S and deforms its profile. The surface areas S1 and S2 are in
contact with the two liquid phases. Note that the figure shows one vertical section
of the interface; both S0 and S undulate when rotating about the vertical axis.
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