
New models and predictions for Brownian coagulation of non-interacting spheres

Aniruddha V. Kelkar, Jiannan Dong, Elias I. Franses, David S. Corti ⇑
School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907-2100, USA

a r t i c l e i n f o

Article history:
Received 10 July 2012
Accepted 18 August 2012
Available online 13 September 2012

Keywords:
Dispersion stability
Aggregation kinetics
Unsteady-state coagulation
Brownian Dynamics Simulations
Hydrodynamic interactions

a b s t r a c t

The classical steady-state Smoluchowski model for Brownian coagulation is evaluated using Brownian
Dynamics Simulations (BDS) as a benchmark. The predictions of this approach compare favorably with
the results of BDS only in the dilute limit, that is, for volume fractions of / 6 5 � 10�4. From the solution
of the more general unsteady-state diffusion equation, a new model for coagulation is developed. The
resulting coagulation rate constant is time-dependent and approaches the steady-state limit only at large
times. Moreover, in contrast to the Smoluchowski model, this rate constant depends on the particle size,
with the transient effects becoming more significant at larger sizes. The predictions of the unsteady-state
model agree well with the BDS results up to volume fractions of about / = 0.1, at which the aggregation
half-time predicted by the Smoluchowski model is five times that of the BDS. A new procedure to extract
the aggregation rate constant from simulation results based on this model is presented. The choice of the
rate constant kernel used in the population balance equations for complete aggregation is also evaluated.
Extension of the new model to a variable rate constant kernel leads to increased accuracy of the predic-
tions, especially for / P 5 � 10�3. This size-dependence of the rate constant kernel affects particularly
the predictions for initially polydisperse sphere systems. In addition, the model is extended to account
in a novel way for both short-range viscous two-particle interactions and long-range many-particle
Hydrodynamic Interactions (HI). Predictions including HI agree best with the BDS results. The new mod-
els presented here offer accurate and computationally less-intensive predictions of the coagulation
dynamics while also accounting for hydrodynamic coupling.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Dispersion stability is an important problem for many applica-
tions of colloidal and nanoparticle systems including drug delivery
[1], inkjet printing [2–4], and flow assurance [5]. Colloidal particles
with sizes smaller than about 5 lm are subjected to significant
Brownian motion in a liquid dispersion medium. As a result, the
particles will eventually collide with each other. These collisions
can cause the particles to ‘‘stick’’ together, that is, irreversibly
aggregate or coagulate. Additional collisions lead to the formation
of ever larger aggregates, which either settle or float when they be-
come sufficiently large [6–8]. Fluid particles can also coalesce after
coagulation, forming a larger spherical particle. This equivalent-
sphere model is sometimes used even for non-coalescing aggre-
gates. A dispersion is considered ‘‘colloidally’’ stable if the primary
particles retain their individual and kinetic independence, and
unstable if the particles coagulate or coalesce. The rate at which
collisions lead to an aggregation event, or the aggregation rate, is
also dependent upon the thermodynamic and hydrodynamic inter-
actions between the particles.

The classical approach for describing ‘‘perikinetic’’ coagulation
rates was first developed by Smoluchowski [6,8,9], who considered
the limit of ‘‘rapid’’ coagulation, whereby every collision leads to
irreversible aggregation. In this model, the particles are trans-
ported toward each other by a steady-state diffusive flux in the ab-
sence of any interacting forces other than a very short-range
interaction that leads to particle capture. In other words, the coag-
ulation of ‘‘hard-spheres’’ is modeled via a diffusion-limited aggre-
gation process. The Smoluchowski analysis applies to quite dilute
dispersions because of the use of the following two simplifying
assumptions: (1) only collisions of primary particles that form di-
mers are considered, and (2) a particle’s diffusion coefficient is
set equal to the ‘‘infinitely-dilute’’ Stokes–Einstein value.

The steady-state flux approach was extended by Fuchs [10] to
coagulation in the presence of any attractive or repulsive interpar-
ticle forces. This is the Fuchs–Smoluchowski model. These two
models have been used extensively to describe coagulation rates
and to aid in the interpretation of experiments and simulations.
Discrepancies between experimental data and the Fuchs–Smolu-
chowski model predictions were attributed to (1) model approxi-
mations, as will be shown here, (2) incomplete knowledge of
interparticle forces, (3) particle shape effects, and (4) no account-
ing for Hydrodynamic Interactions (HI) that develop between
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particles. Several methods for including HI into the Fuchs–Smolu-
chowski model have been reported [11–15].

One of the most powerful and commonly used tools to study
coagulation in colloidal dispersions is numerical simulations. A
popular method, highly suited for the study of aggregation dynam-
ics, is Brownian Dynamics Simulations (BDS) [12,16]. By employing
a stochastic-dynamics approach, BDS enables a direct simulation of
the coagulation dynamics over a limited range of experimentally
relevant timescales. Spatial correlations in the particles’ relative
motion due to HI can also be included in BDS. Given a known inter-
particle force, BDS yields the dynamics of a ‘‘real system’’ without
the need of the simplifying assumptions used in the Smoluchowski
and Fuchs–Smoluchowski models.

In these two classical models, the initial transient state dynam-
ics are ignored. One of the goals of this article is to evaluate the
implications of this assumption. BDS results are therefore com-
pared to the coagulation dynamics predicted by the Smoluchowski
steady-state model (SS model) and a new model that utilizes the
more general unsteady-state diffusion equation (USS model).
Analytical solutions for the complete population-balance equa-
tions with the USS model are reported here for the first time,
which compare quite favorably to BDS results at low volume
fractions. The unsteady-state equation has been used previously
to obtain only an unsteady-state flux in the numerical analysis of
Roebersen and Wiersema [17], while a brief analytical treatment
of a subset of the full population balance equations has been
reported previously [18]. Overall, the USS model predicts signifi-
cantly smaller half-times of aggregation for a given dispersion
especially for large-diameter particles, indicating that transient
effects are very important.

In the general population balance equations used for obtaining
the aggregation dynamics, one often uses the simplifying assump-
tions that only binary collisions occur and that the kinetic rate con-
stant kij for particles of size i and j (i and j being the number of
primary particles per aggregate) is the same as k11 (the rate con-
stant for two primary particle collisions). These simplifications
should only be valid in the early stages of aggregation of initially
monodisperse spheres. In this article, we also evaluate the effect
of using a variable versus a fixed kij on the aggregation dynamics.
This is done by comparing the predictions of the analytical USS
model with a fixed kij (equal to k11) and a new numerical USS mod-
el with variable kij. Previous numerical analyses [19,20] were lim-
ited to the SS model and encumbered with some computational
difficulties that restricted the size of the aggregates that could be
considered. The effect of the initial polydispersity of the system
is also studied.

Furthermore, new semi-analytical SS and numerical USS models
are reported that include the effect of many-body hydrodynamics
[21,22] and viscous interactions [23]. Similar to the computational
scheme introduced by Urbina-Villalba et al. [15], these models
account for the volume fraction dependence of the diffusion coef-
ficient and the large HI that develop at close interparticle distances
due to lubrication effects. A comparison of the predictions of these
models with the BDS results accounting for HI is also presented.

Finally, we determine the volume fraction (/) limits of the SS
and USS models. The predicted half-times of aggregation for differ-
ent volume fractions obtained from the SS and USS models are
compared to the BDS results. For the hard-sphere interactions con-
sidered here, the maximum / value for the dilute dispersion
approximation of the SS model is about 0.0005. Beyond such small
values, the USS models or the BDS simulations should be used.

Having accurate predictions of the coagulation dynamics allows
for more reliable comparisons to experimental data. In turn, this
enables the improved extraction of kinetic constants from such
data. The USS models described in this article provide plausible
predictions, at least with respect to the results of BDS. Models that

account for non-steady-state effects should therefore be applicable
to describing coagulation dynamics at much longer times and for
larger aggregate sizes than can be described using BDS.

2. Steady-state and unsteady-state diffusion models

2.1. Models without hydrodynamic interactions

The models discussed in this section are primarily applicable to
initially monodisperse spheres of radius R when the dominant par-
ticle aggregation mechanism is ‘‘perikinetic’’, or via diffusive or
Brownian motion (toward the end of this section and in Section 4.5,
we discuss certain cases of initially polydisperse spheres). The par-
ticles coagulate as hard-spheres in the absence of any medium or
long-range attractive or repulsive forces. It is assumed that there
is a short-range attractive force between the particles of sufficient
strength to form an irreversible bond once they come into contact
with each other. This force does not affect the diffusion of the par-
ticles toward each other. In the early stages of aggregation, mono-
mer particles coagulate to form dimers. Trimer and higher
aggregate cluster formation is ignored. For the later stages of the
aggregation process, population balance equations are employed
for obtaining the general cluster dynamics.

Some key steps in the derivation of the steady-state flux
(Smoluchowski model) and the unsteady-state flux diffusion mod-
els are presented here. Even though the derivation of the classical
Smoluchowski model for the early stages of aggregation can be
found in the literature, it is briefly reviewed in order to highlight
some points regarding the assumptions involved. As in Smolu-
chowski’s original analysis, a spherical coordinate system is chosen
with the origin fixed at the center of one particle, which is assumed
to be ‘‘fixed’’ or stationary. Another particle diffuses toward the
fixed particle. This particle moves until it ‘‘touches’’ the fixed par-
ticle, thereby instantaneously forming a dimer. Thus, the process is
divided in to two steps: (1) a diffusion step and (2) an instanta-
neous reaction step when the particles collide. In the diffusive step,
a diffusive flux toward the fixed particles is obtained, which is ta-
ken to be spherically symmetric. The flux J1 of the monomer parti-
cles crossing a unit area toward the fixed particle per unit time, for
quite dilute dispersions, is given by Fick’s law

J1 ¼ �D1
@q1

@r
ð1Þ

where r is the radial distance from the center of the fixed particle,
D1 is the monomer particle self diffusion coefficient, and q1(r, t) is
the spherically symmetric number density of monomer particles,
which is also a function of time t. The number density of the parti-
cles in the bulk dispersion far away from the fixed particle, N1, is
uniform and constant during the particle diffusion step. The number
density of the particles at r = 2R, where the two particles collide, is
zero. The bulk dispersion is a ‘‘source’’ for particles, while the fixed
particle acts as a particle ‘‘sink’’. A differential number balance
across a spherical shell of an inner radius r P 2R and thickness dr
yields the unsteady-state diffusion equation for q1(r, t).
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r2

@

@r
r2D1

@q1

@r

� �
ð2Þ

For infinitely dilute dispersions, the diffusion coefficient D1 is
given by the Stokes–Einstein equation:

D1 ¼
kBT

6pga
ð3Þ

where a is the hydrodynamic radius of the particles (a = R here), T is
the absolute temperature, kB is Boltzmann’s constant, and g is the
solution Newtonian viscosity. The boundary conditions are
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