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We present a new approach, which can be considered as a generalization of the Derjaguin approximation,
that provides exact means to determine the force acting between a three-dimensional body of any shape
and a half-space mutually interacting via pairwise potentials. Using it, in the cases of the Lennard-Jones,
standard and the retarded (Casimir) van der Waals interactions we derive exact expressions for the forces
between a half-space or a slab of finite thickness and an ellipsoid in a general orientation, which in the
simplest case reduces to a sphere, a tilted fully elliptic torus, and a body obtained via rotation of a single
loop generalized Cassini oval, a particular example of which mimics the shape of a red blood cell. The
results are obtained for the case when the object is separated from the plane via a non-polar continuous
medium that can be gas, liquid or vacuum. Specific examples of biological objects of various shapes inter-
acting with a plate like substrates are also considered.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Derjaguin approximation (DA) [1,2] allows to determine the
forces between two gently curved colloidal particles in a close
proximity, or a particle and a half-space bounded by a smooth
plane surface, based on the knowledge of this interaction between
two planar half-spaces which is normally much easier to be deter-
mined analytically. Further, we are going to use the term plate in-
stead of half-space bounded by a smooth plane surface for simplicity.
More specifically, the DA states that the interaction force Ffi-®2 (L)
between two curved surfaces with curvatures R, and R, separated
by a distance L is:

FRR (L) = 27Reg /L” Fj(2)dz = 27Rer ) (L), M

where Ryf = R, + R, is the effective radius, F)| - the force per unit
area between plates, and ¢/, is the corresponding potential of inter-
action per unit area of the plates. As it is clear from the above
expression the DA assumes that the force on an infinitesimally
small area of one curved surface is due to the interaction with lo-
cally flat portions on the other curved surface which implies R,
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R, > L. When the sphere with radius R; = R interacts with a flat sur-
face one has R, = co and then Eq. (1) is still valid with Reg =R, i.e.:

FR(L) = 2R (L) (2)

Let us note that despite being called, in some areas, proximity “the-
orem” the DA is simply an approximation and is not valid in a
strictly mathematical sense. It is normally assumed that the DA
would appear to be justified as long as the colloids are larger than
the range of the intermolecular interactions. As it is clear from
the above the DA is particularly useful in generalizing theoretical
results for planar geometries and is often explicitly (or implicitly)
used when interpreting measurements with the surface force appa-
ratus (SFA) [3]. It is important to note that despite of its limitations
the DA is widely used for calculations of the interaction potential/
force between colloidal particles of various geometries - see, e.g.,
and the literature cited therein [4-10].

In the current article we will propose a generalization of the DA
that allows to determine the exact interaction between a three-
dimensional (3d) body of any shape with a plate provided that they
both are immersed in a non-polar continuous medium that can be
gas, liquid or vacuum, and the interaction can be considered as due
to pairwise potentials. Concrete examples for specific bodies will
be presented for the cases of Lennard-Jones, standard and the re-
tarded (Casimir) van der Waals interactions and some concrete
examples concerning the application of the approach proposed
for studying biological objects will be discussed. We will term
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our approach a “surface integration approach” (SIA) to be de-
scribed in the next section.

The structure of the article is as follows. In Section 2 we intro-
duce and derive the general expressions of the SIA technique. In
Section 3 we derive closed-form analytical expressions for the inter-
action of objects of specific geometric shape with a plate or slab of
finite thickness. We consider the cases of the interaction of solid
sphere with a half-space - Section 3.1, spherical shell and a slab of
finite thickness — Section 3.2, arbitrarily orientated solid ellipsoid
and a half-space - Section 3.3, arbitrarily orientated ellipsoidal shell
and a slab of finite thickness — Section 3.4, tilted fully elliptic torus
and a half-space - Section 3.5, a solid body obtained via rotation of a
single loop generalized Cassini oval and a half-space - Section 3.6, a
shell obtained via rotation of a single loop generalized Cassini oval
and a slab of finite thickness - Section 3.7. We study the cases of
interactions represented via pair-wise standard and retarded
(Casimir) van der Waals interaction and Lennard-Jones potential.
Application of the analytical results derived for the evaluation of
the interaction of biological objects with a planar substrate
(phospholipid bilayer) are presented in Section 4. The article closes
with a “Discussion and concluding remarks” section. The technical
details needed to obtain the analytical results for the tilted fully
elliptic torus are given in Appendix A.

2. Surface integration approach

If the continuous medium (gas, liquid or vacuum) between a
body of some general shape and a plate are in a thermodynamic
equilibrium the pressure p(r) at any point r on the surface of the
body immersed in this medium will be along the normal n; to its
surface at that point. Then, integrating over the closed surface S
of the object, one obtains the force F acting on such an object

F= f;p(r)n,ds. (3)

In the case of a force FRI(L) between a sphere of radius R and a plate
at closest distance L from the sphere for the projection F*!(L) of the
force on the normal from the center of the sphere to the plate, taken
to be the z-axis, one obtains

P = P e, = 2nk | M{ z RL}FW \dz, )

(see below for more details), where e, is a unit vector pointing along
the z axis from the sphere to the plate. The above is the simplest
example of what we will call the “surface integration approach”
(SIA) for the calculation of the force acting between a body and a
plate. Under the assumptions for which Eq. (3) is valid the above
result for the sphere-plate force is exact and it obviously reduces
to the DA, see Eq. (2), if one takes the limit R — oo in the integral
in Eq. (4). For a material body B (say, colloidal particle), B={(x, y,
z), (x, ¥, z) € B}, of a general shape S(x, y) = z interacting with a (x,
y)-plane the corresponding result, see the derivation below, is

FB\ / /FH x,y)] nSxy )Xy -€S(xy) dxdy, (5)
As |nSxy )XY eSxy)'
where As is the projection of the surface S of the particle, defined as
S(x, y) =z, over the plate it interacts with. In Eq. (5) the projection
plane is taken to coincide with the (x, y)-plane of the coordinate
frame. Note that Eq. (5) has a very simple intuitive meaning: in
determining the force acting on the particle one has to subtract
from the contributions stemming from surface regions that “face to-
wards” the projection plane those from regions that “face away”
from it. Denoting the projections of the corresponding parts of the

surface of the body on the (x, y)-plane as AY and A3"®, where
As = AY |JAMY, Eq. (5) can be simplified to

FEI(L / /F” [S(x,y)]dxdy — / /F” [S(x,y)]dxdy. (6)

In the simplest case of a sphere, considered in Eq. (4), the above im-
plies that the contributions will be of the same sign as Fi‘,“(z) for
z<L+R, and of opposite sign for z> L +R.

Expression Eq. (6) provides means to determine the exact inter-
action of a material body of any shape with a planar surface from
the only knowledge of the plate-plate interactions. In that respect
it represents a valuable generalization of the original Derjaguin
approximation.

Let us now briefly demonstrate the validity of Eqs. (4)—(6) for
any material body in front of a planar surface for any interaction
that allows a representation in terms of point-like sources.

Let @P!(L) is the potential of interaction of a point-like object at
a distance L in front of a plate bounded by the (x, y)-plane of the
coordinate frame. Then, let (/)I‘,“(L) is the corresponding potential
of interaction, per unit area, between two plates a distance L apart
along the z-axis. Obviously

oAV = [ ¢ @z )

provided that lim; .../ (L) = 0, which is normally the case for any
reasonably fast decaying potential of interaction. Let V is the vol-
ume of a body B in front of a plate at distance L of closest approach
to it. For the potential ¢P!(L) of interaction of B with the plate one
obtains

L+D

QPI(L) = /v QP (z)dxdydz = | Az - L)pP\(2)dz

L+D
_ / Fl(2)A(z - Lydz. ®)
L

In Eq. (8) A(z) is the area of the cross section of the body with a
plane parallel to the (x, y)-plane at distance z from it. There D is
the length of the orthogonal projection of B on the z-axis. In the last
line of Eq. (8) we have used Eq. (7) and the relation

d
FA(l) = = 3; Ph(L). )
Now, on the basis of Eq. (8) and the fact that
d
B.| — _ Bl
FA (L) = —gp o7 (L), (10)

one obtains that:

d

FP(L) = Fy(DA(0) — Fy(L + D)A(D) + / TRed e
JL

Alz - Lydz. (11)

Performing an integration by parts in the last term of Eq. (11) one
derives

[+D d
FEl(L) = - A(z—L)( Fi(z )dz = / —F}(z)dxdydz
L
_ / div(Fje.)dv = 74 Fle, - ds, (12)
JV JS
or, in other words
(L) e, = 7{ Fle, - ds. (13)
JS

Since the x and y components of F*(L) under the symmetry given in
the problem are zero, one can generalize Eq. (13) into

(L) = ]g Flds = f; Fin,ds, (14)

which is the statement analogous to Eq. (3). From Eq. (14) it is
straightforward to derive Eq. (5) and, as a particular case, Eq. (4).
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