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a b s t r a c t

The electrokinetic behavior of nanofluidic devices is dominated by the electrical double layers at the
device walls. Therefore, accurate, predictive models of double layers are essential for device design
and optimization. In this paper, we demonstrate that density functional theory (DFT) of electrolytes is
an accurate and computationally efficient method for computing finite ion size effects and the resulting
ion–ion correlations that are neglected in classical double layer theories such as Poisson–Boltzmann.
Because DFT is derived from liquid-theory thermodynamic principles, it is ideal for nanofluidic systems
with small spatial dimensions, high surface charge densities, high ion concentrations, and/or large ions.
Ion–ion correlations are expected to be important in these regimes, leading to nonlinear phenomena such
as charge inversion, wherein more counterions adsorb at the wall than is necessary to neutralize its sur-
face charge, leading to a second layer of co-ions. We show that DFT, unlike other theories that do not
include ion–ion correlations, can predict charge inversion and other nonlinear phenomena that lead to
qualitatively different current densities and ion velocities for both pressure-driven and electro-osmotic
flows. We therefore propose that DFT can be a valuable modeling and design tool for nanofluidic devices
as they become smaller and more highly charged.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Fluidic devices fabricated with nanometer-scale features hold
the promise to analyze, separate, concentrate, manipulate, and de-
tect specific molecules with exquisite sensitivity and high through-
put. Applications include DNA sequencing, medical testing, and
biowarfare defense [1]. These applications can be realized because
the fluids are confined to slits or channels whose smallest dimen-
sion is tens of nanometers in size (with the other dimensions still
macroscopic). The smaller the confining direction is, the more that
surface effects—which are negligible in macroscopic systems—
come to dominate over normal bulk properties. The ionic current
and velocities through these nanoscale electrokinetic devices is
then defined by the structure of the electrical double layers at
the device walls.

The interactions at the solid/liquid interface can occur via sev-
eral mechanisms [2]. Even in the absence of chemical bonding be-
tween any of the molecules, there are steric and electrostatic
interactions between the fluid and the wall molecules. In many
contemporary nanofluidic devices, the surface charge of the chan-
nel walls is large enough that the nonlinear coupling between

these ‘‘simple’’ interactions gives the device novel properties that
change with ion type and concentration [3,4]. Therefore, one of
the first goals toward the development of truly unique nanofluidic
devices is a robust theory of the solid/liquid interface to predict—
even if just qualitatively—device behavior with different electro-
lytes, electrolyte concentrations, flow conditions, and nanochannel
surfaces.

To model the solid/liquid interface of an electrolyte in a nano-
fluidic channel, ideally one would use all-atom molecular simula-
tions. While they have provided useful insights, these models
remain too computationally expensive to be relevant at the time
and length scales of dynamic nanofluidic phenomena [5]. Unfortu-
nately, theories that span these scales necessarily trade computa-
tion time for less accurate representations of ion–ion and
ion–wall interactions. As recently reviewed by Bazant et al. [6],
several models have been proposed to extend the classic
Gouy–Chapman–Stern theory for dilute solutions [7–9] to include
steric effects due to the finite size of ions.

Perhaps the simplest such model was developed by Bikerman
[10], wherein the accumulation of ions is limited by capping each
ion’s packing fraction. Bikerman’s model has garnered renewed
interest in recent years (see Bazant et al. [6] for references), and,
despite its simplicity, yields predictions that are qualitatively
different from the Gouy–Chapman–Stern theory. For example,
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Bikerman’s model yields a differential capacitance that decreases
with voltage [11], as opposed to the exponential growth in
Gouy–Chapman–Stern theory. It also predicts the experimentally
observed flow-reversal at high frequencies in AC electro-osmosis
[12]. Other, more sophisticated, models to account for ion size
incorporate the Boublik–Mansoori–Carnahan–Starling–Leland
(BMCSL) equation of state for a hard-sphere liquid [13–15]. How-
ever, as we will show, these kinds of models cannot account for
ion–ion correlations that occur in nanofluidic systems under a
wide range of experimental conditions.

In this paper, we use density functional theory (DFT) of fluids
[16–19], a theory that aims to fill the gap between computational
efficiency and thermodynamic accuracy. DFT of fluids—not to be
confused with quantum mechanical DFT of electron orbitals—is de-
rived from well-established thermodynamics to take into account
the effects of finite ion size. The resulting ionic correlations include
not only steric correlations, but also—and usually more impor-
tantly—electrostatic correlations beyond the mean electrostatic
potential that is used in Poisson–Boltzmann (PB), Bikerman, and
BMCSL theories. DFT has been used to successfully model a wide
variety of fluids (reviewed by Wu [20]), including simple fluids
[21–23], the electrical double layer [18,24–27], and biological ion
channels [28–31]. Nilsen and Griffiths [32] used DFT to study elec-
trokinetics of monovalent ions in slits that were only several ion
diameters wide. However, as yet DFT has not found widespread
use in modeling nanofluidic phenomena, despite the fact that
ion–ion correlations are expected to be important. The goal of this
paper is to focus on situations where DFT describes experimental
effects not captured in simpler theories.

In Section 2, we provide a brief description of DFT (including the
basic equations to model a planar charged wall) and its general
advantages and disadvantages compared with other, simpler theo-
ries. In Section 3, we compare DFT of a single electrical double layer
with more traditional, PB and Bikerman, theories in conditions rel-
evant to the experimental nanofluidician. Furthermore, we will fo-
cus on those cases where PB-like theories break down and it is
especially crucial to use more sophisticated models like DFT. Final-
ly, in Section 4, we discuss DFT calculations of ion transport in
nanofluidic systems. We find that electro-osmotic and pressure-
driven currents can be qualitatively different for the same device
under conditions where the finite size of ions must be taken into
account.

2. Theory

In this work, we consider a typical nanofluidic device with a sin-
gle-slit geometry where ions move along the x-direction between
x = 0 to x = L and electrical double layers are created by charged slit
walls at y = 0 and y = H. We assume that both the length L and the
width W (in the z-direction) are macroscopic compared with the
nanoscale dimension H and that ionic concentrations do not
change in the x- and z-directions. Such a geometry is the most pre-
valent in experimental nanofluidic systems to date [1].

In this geometry, all three of the theories that we consider in
this paper (PB, Bikerman, and DFT) can be described within the
same mathematical framework. Specifically, in the y-direction,
the ions are in equilibrium and the concentration profiles are com-
puted from the ions’ excess electrochemical potentials:

qiðyÞ ¼ qbath
i exp � zie

kT
wðyÞ � Dlex

i ðyÞ � UiðyÞ
� �

: ð1Þ

Here, qbath
i is the concentration in the bath (far from the wall) of ion

species i with valence zi and lex
i ðyÞ is the excess chemical potential

of species i, with the D indicating that the bath value has been sub-
tracted off. The fundamental charge is e, the Boltzmann constant k,

and the absolute temperature T. The mean electrostatic potential w
is computed from the Poisson equation

�ee0
d2w

dy2 ðyÞ ¼ e
X

i

ziqiðyÞ þ rdðyÞ; ð2Þ

where r is the surface charge on the wall, d is the Dirac delta func-
tion, e0 is the permittivity of vacuum, and e is the relative dielectric
coefficient, which in this paper is assumed to be constant through-
out the system. When we consider a single electrical double layer,
the boundary conditions for Eq. (2) are that dwð�1Þ=dx ¼ 0 and
wð1Þ ¼ 0. For a slit, dwð�1Þ=dx ¼ 0. (In practice, ±1 are taken to
be finite large distances.) The last component is the function Ui,
which defines where the centers of the ions can and cannot go:

UiðyÞ ¼
0 if si < y < H � si

1 otherwise;

�
; ð3Þ

where si is the distance of closest approach of species i. This may be
the width of the Stern layer or the simply the radius of the ion itself,
as described below.

DFT, PB, and generalizations of PB share this basic mathematical
framework of self-consistent mean electrostatic potential deter-
mining the ion concentration profile. The models differ in the def-
inition of the excess chemical potential, which in DFT plays an
equal or greater role than wðyÞ. We will describe how DFT defines
lex

i ðyÞ in the next section. In the remainder of this section, we de-
scribe two commonly used models that we will also use in this pa-
per. In the notation of Eqs. (1)–(3), these are:

1. PB where Dlex
i ðyÞ ¼ 0 and si ¼ 0 except in one case of very large

ions (shown later in Fig. 3) where si ¼ Ri, the radius of ion spe-
cies i.

2. Bikerman where si ¼ 0 and

lex
i ðyÞ ¼ �kT ln 1� 8

X
j

R3
j qjðyÞ

 !
: ð4Þ

We note that the different distances of closest approach si of the
ions (the radius in DFT and zero in the PB and Bikerman models)
complicates direct comparisons of ion profiles near the wall. Such
complications must be handled for very precise comparisons. How-
ever, the purpose of our comparing DFT to these models is only to
illustrate the qualitative differences between generalized PB mod-
els and DFT for phenomena like charge inversion and ion packing
and to illustrate approximately under what conditions such phe-
nomena start to occur in DFT.

2.1. DFT of charged, hard spheres

We consider the primitive model of ions where ions are
charged, hard spheres with the same dielectric constant as the sol-
vent. The primitive model has been useful in understanding the
electrical double layer [33,34]. It is also the simplest model to
reproduce much experimental data, including activity coefficients
[35], ionic currents through biological ion channels [29], and syn-
thetic nanopores [4]. Later in this paper, we will also use the prim-
itive model to reproduce experimental nanofluidics data.

For bulk electrolytes (i.e., when ion concentrations are homoge-
neous), there are several theories for modeling the excess chemical
potential of primitive model ions, including the Debye/Hückel,
mean spherical approximation (MSA), and hypernetted chain the-
ories, to name only a few (review by Barthel et al. [36]). When
the ion distributions are inhomogeneous (e.g., near a wall), the ex-
cess chemical potential and ion concentration profiles can be com-
puted with integral equations and DFT. Integral equation theory
(reviewed by Hansen and McDonald [37]), like DFT, includes the
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