Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yclim

IL-10/IFN γ co-expressing CD4⁺ T cells induced by IL-10 DC display a regulatory gene profile and downmodulate T cell responses

Martine A. Boks, Judith R. Kager-Groenland, S. Marieke van Ham, Anja ten Brinke *

Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands

A R T I C L E I N F O

Article history: Received 7 July 2015 Received in revised form 26 October 2015 accepted with revision 26 November 2015 Available online 27 November 2015

Keywords: Tolerogenic dendritic cells Cytokines Regulatory T cells Micro array Suppression T helper cell plasticity

1. Introduction

Ex vivo generated tolerogenic dendritic cells (tDC) have the therapeutic potential to induce antigen-specific immunological tolerance in autoimmune diseases or in transplanted patients. We and other groups developed different protocols to culture tDC under GMP conditions (as reviewed by Schinnerling et al. [1]). tDC may induce peripheral tolerance by direct downmodulation of undesired effector T cell immunity [2–4] or indirectly by promoting development of induced regulatory T cells (iTreg) [5–8]. The latter pathway transfers tolerogenic potencies from tDCs to T cells and allows spreading and amplification of immune regulation. iTregs therefore form effective vehicles for infectious tolerance.

The phenotype of the tDC-primed T cells may vary depending on the type of tDC used [9–12]. One of the best studied iTregs are Tr1 cells, these Tregs are induced upon antigen-specific priming of naive T cells by tolerogenic DC-10 cells [13]. Tr1 cells produce large amounts of IL-10, TGF β and IL-5, and variable amounts of IFN γ and suppress effector T cell proliferation through secretion of IL-10 and TGF β [14,15]. Only recently it was elucidated that Tr1 cells can be identified and isolated based on co-expression of CD49b and LAG-3 [16].

ABSTRACT

Induced regulatory T cells (iTreg) are imperative for tolerance induction and spreading of infectious tolerance. *Ex vivo* generated tolerogenic dendritic cells (tDCs) have strong therapeutic potential to induce antigen-specific iTreg. We previously demonstrated that IL-10 tDC-primed T cells are very suppressive and produce IL-10. Here, we show that the majority of IL-10⁺ T cells co-express IFN γ , giving rise to the question whether these cells are proinflammatory or regulatory. Whole genome gene expression analysis revealed a strong regulatory gene profile and a suppressed Th1 gene profile for IL-10/IFN γ co-expressing CD4⁺ T cells. Protein analysis confirmed an extensive regulatory phenotype for IL-10⁺/IFN γ ⁺ T cells, with specific enhanced expression of GARP and PD-1. In line with these data, isolated IL-10⁺/IFN γ ⁺ T cells displayed potent suppressive capacity. Thus, IL-10/IFN γ co-expressing CD4⁺ T cells induced by IL-10 tDC show dominance of immunomodulation over Th1-mediated immunoactivation and can contribute to induction or spreading of immunological tolerance.

© 2015 Elsevier Inc. All rights reserved.

Clearly, expression of IL-10 is not confined to Tregs. CD4 T effector cells are more plastic than previously thought [17] and IL-10 can be co-expressed by Th1, Th2 and Th17 cells [18]. IL-10 coproduction by Th1 and Th17 cells was suggested to mainly serve to protect against excessive immunopathology. Specifically in chronic infections, in human and in experimental animal models, CD4⁺ T cells are found that produce high amounts of both IL-10 and IFN_Y [19–23]. Indeed the IL-10 from these Th1 cells was demonstrated to play an important regulatory role for host protection [21,22]. These observations have made the distinction-line between the classical immunoactivatory CD4 T effector lineages and iTreg less clear. Also natural Tregs (nTregs) proved not to be a homogeneous population. By sensing environmental cues they can adjust their migratory and functional properties. This phenotypical plasticity of the nTregs is controlled by the same lineage-specific transcription factors that determine the effector Th cells they regulate, e.g. Th1-like nTregs expressing T-bet [24-26].

The recognition of plasticity between the various immunoactivatory and immunoregulatory CD4 T cell lineages makes it nowadays very important to clearly delineate the functional potential of CD4 effector T cells that co-express multiple lineage-specifying cytokines. We previously demonstrated that IL-10 tDC-primed T cells are very suppressive and produce IL-10, but that IL-10 is not the decisive regulatory molecule [27]. In this study we analyzed the primed T cells in more detail and found that the majority of the IL-10⁺ T cell population co-expressed IFN γ . Whole genome gene expression analysis and protein expression analysis demonstrated that induced IL-10/IFN γ co-expressing T cells exhibited a strong regulatory phenotype, with enhanced expression of multiple regulatory proteins like GARP and PD-1 and downmodulation

Abbreviations: APC, antigen presenting cell; DC, dendritic cells; DP, double positive; IL-10, interleukin 10; mDC, mature DC; nTreg, natural Treg; SP, single positive; tDC, tolerogenic DC; Th cell, T helper cell; Treg, regulatory T cell.

^{*} Corresponding author at: Department of Immunopathology, Sanquin Research, PO Box 9190, 1006 AD Amsterdam, The Netherlands.

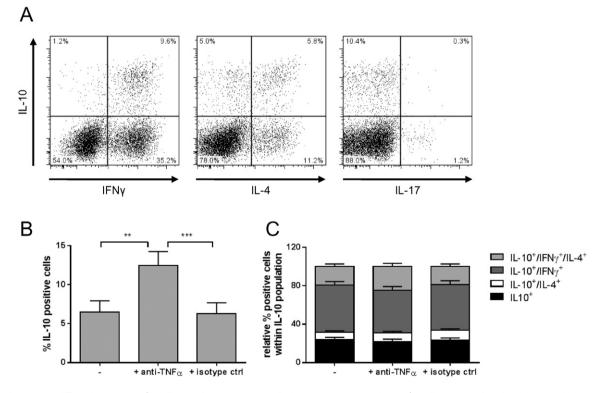
E-mail address: a.tenbrinke@sanquin.nl (A. ten Brinke).

of typical Th1-like signature. Isolated IL-10⁺/IFN γ^+ T cells displayed a potent suppressive capacity on responder T cell proliferation, demonstrating that the regulatory function of these cells is dominant compared to their immunoactivatory potential.

2. Materials and methods

2.1. Antibodies and reagents

CellGro DC serum-free medium, GM-CSF, IL-4, IL-1 β and TNF α were all obtained from CellGenix (Freiburg, Germany). IL-10 and IL-2 were purchased from PeproTech (Rocky Hill, USA). PGE₂, PMA, ionomycin and brefeldin A were all obtained from Sigma-Aldrich (Steinheim, Germany). Penicillin and streptomycin were obtained from Gibco (Merelbeke, Beldium). For co-cultures Iscove's Modified Dulbecco's Medium (IMDM, Bio Whittaker, Verviers, Belgium) with 10% fetal calf serum (Bodinco, Alkmaar, The Netherlands) was used as described [28]. Adalimumab (Humira; Abbott) F(ab)₂ fragments were used as TNF α blocking agent at 10 µg/ml. As isotype control, F(ab)₂ fragments of an irrelevant monoclonal antibody directed against FelD1 (cat allergen) were used (Sanquin Reagents, Amsterdam, The Netherlands).


The following fluorochrome-labeled monoclonal antibodies were used: CTLA-4, Galectin-3, GARP, IFNγ and IL-4 from Becton Dickinson (BD Biosciences, San Jose, USA). IL-10 was obtained from Diaclone (via Sanquin Reagents), PD-1 from R&D Systems (Minneapolis, USA), IL-17 from eBioscience (Vienna, Austria), and LAG-3 from LSBio (LifeSpan Biosciences; Seattle, USA). The following antibodies were used with an appropriate secondary antibody: Galectin-10 (R&D) and Legumain (Santa Cruz Biotechnology; Heidelberg, Germany). Isotype-matched controls from Dako (Glostrup, Denmark), Sanquin Reagents or BD Biosciences were used. Secondary rabbit-anti-mouse antibody from Dako was used.

2.2. Isolation and culture of monocyte-derived dendritic cells

Monocytes were isolated from fresh aphaeresis material of healthy volunteers (after informed consent) by using the ElutraTM cell separation system (Gambro, Lakewood, USA). Monocytes were cultured at 1.5×10^6 cells/3 ml in 6 well plates (Nunc, Roskilde, Denmark) in serum-free CellGro medium supplemented with IL-4 (800 IU/ml), GM-CSF (1000 IU/ml), penicillin (100 IU/ml) and streptomycin (100 µg/ml). After 6 days, the immature DC were matured with IL-10 (40 ng/ml; 1 h pre-incubation) together with IL-1 β (10 ng/ml), TNF α (10 ng/ml) and PGE₂ (1 µg/ml) for 2 more days to generate IL-10 tDC, as described previously [27]. Alternatively, DC were matured with IL-1 β , TNF α and PGE₂ without IL-10 to generate mature immunoactivatory (m)DC.

2.3. T cell-dendritic cell co-culture and intracellular cytokine staining

Naive CD4⁺ CD45RA⁺ CD45RO⁻ T cells were isolated as described previously [27]. Allogeneic IL-10 tDC were co-cultured with 1×10^5 CD4⁺ naive T cells (1:5) in 96-wells flat-bottom plates (Nunc) for 13–15 days. Anti-TNF α or isotype control F(ab)₂ fragments (10 µg/ml) were added at start of co-culture. Fresh medium plus recombinant human IL-2 (10 U/ml) was added at day 7 of co-culture, and the cells were expanded for the next 6–8 days. Subsequently, T cells were restimulated with PMA and ionomycin (10 ng/ml and 1 µg/ml, respectively) for 5 h in the presence of brefeldin A (10 µg/ml). Production of IL-4, IL-10, IL-17 and IFN γ was detected by intracellular FACS staining on an LSRII flow cytometer and analyzed with FACS Diva software (BD Biosciences). For phenotyping, T cells were incubated with specific monoclonal antibodies or appropriate isotype-matched controls.

Fig. 1. IL-10 tolerogenic DC differentiate naive CD4⁺ T cells toward IL-10 expressing cells that co-express IFN γ . Naive CD4⁺ T cells were co-cultured with IL-10 tDC in the presence of anti-TNF α F(ab)₂. After 2 weeks, primed T cells were restimulated with PMA and ionomycin and stained intracellularly for IL-10, IFN γ , IL-4 and IL-17. (A) A representative dotplot of 14 independent experiments is shown. (B, C) T cells were primed by IL-10 tDC in the presence or absence of anti-TNF α F(ab)₂ or an isotype control F(ab)₂. Percentage of total IL-10 positive T cells (B) or relative percentage of IL-10 subpopulations (C) as determined by intracellular staining of restimulated primed T cells. Mean + SEM of 14 independent experiments is shown. The percentage of IL-10⁺ T cells that co-expressed IFN γ was 71.3 ± 12.9%, 70.0 ± 12.9% and 66.4 ± 12.6% for T cells primed by tDC only, with additional anti-TNF α or with an isotype control, respectively. **p ≤ 0.01, ***p ≤ 0.01, ***p ≤ 0.001.

Download English Version:

https://daneshyari.com/en/article/6087017

Download Persian Version:

https://daneshyari.com/article/6087017

Daneshyari.com