

available at www.sciencedirect.com

Clinical Immunology

www.elsevier.com/locate/yclim

IFN- α cannot substitute lack of IFN- γ responsiveness in cells of an IFN- γ R1 deficient patient

Diederik van de Wetering, Annelies van Wengen, Nigel D.L. Savage, Esther van de Vosse *, Jaap T. van Dissel

Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands

Received 8 September 2010; accepted with revision 8 December 2010 Available online 8 January 2011

KEYWORDS

IFN-α; IFN-γ; IFN-γR1 deficiency; Mycobacteria; Mendelian susceptibility to mycobacterial disease; Treatment **Abstract** Patients with complete IFN- γ R deficiency are unable to respond to IFN- γ and have impaired Th1-immunity and recurrent, severe infections with weakly virulent *Mycobacteria*. Since IFN- α and IFN- γ share signalling pathways, treatment with IFN- α has been proposed in complete IFN- γ R deficiency. We stimulated cells from healthy controls and from a patient lacking IFN- γ R1 with IFN- α and IFN- γ , to establish whether IFN- α would substitute for IFN- γ effects. IFN- α induced STAT1 phosphorylation in monocytes of the IFN- γ R1^{-/-} patient, but did not prime for LPS-induced IL-12p70, IL-12p40, IL-23 or TNF production. In control cells, IFN- α inhibited the priming effect of IFN- γ on LPS-induced pro-inflammatory cytokine release. Finally, IFN- γ but not IFN- α induced killing of *M. smegmatis* in cultured macrophages. In conclusion, no evidence was found to support the use of IFN- α in IFN- γ R-deficient patients as intervention against mycobacterial infection; on the contrary, treatment of individuals with IFN- α may even adversely affect host defence against *Mycobacteria*.

© 2010 Elsevier Inc. Open access under the Elsevier OA license.

1. Introduction

Patients with unusual, persistent and severe infections caused by otherwise poorly pathogenic *Mycobacteria* have a condition known as Mendelian Susceptibility to Mycobacterial Disease (MSMD). MSMD is a heterogeneous disorder that can be caused by mutations in the *IL12B*, *IL12RB1*, *IFNGR1*, *IFNGR2* and *STAT1* genes that are involved in the IL-12/-23/ IFN- γ cytokine signalling cascade [1]. Due to these defects,

* Corresponding author. Fax: +31 71 526 6758.

E-mail address: E.van_de_Vosse@lumc.nl (E. van de Vosse).

no effective immune response is generated in response to mycobacterial infection. Patients with IL-12p40 or IL-12R β 1 deficiency are unable to produce or respond to IL-12 and IL-23. Since IL-12 and IL-23 signalling is imperative for IFN- γ production, these patients do not produce sufficient IFN- γ to control infections. These patients benefit from treatment with recombinant IFN- γ in addition to antibiotics [2]. Patients with partial IFN- γ R deficiency also benefit from treatment with high dose recombinant IFN- γ [3]. A more severe clinical course is seen in complete IFN- γ R1 and IFN- γ R2 deficient patients whereby these individuals often succumb to mycobacterial infections very early in life [1]. Patients with complete IFN- γ R1 or IFN- γ R2 deficiencies are unable to respond to IFN- γ and thus will not benefit from treatment with recombinant IFN- γ . The only currently

¹⁵²¹⁻⁶⁶¹⁶ @ 2010 Elsevier Inc. Open access under the Elsevier OA license. doi:10.1016/j.clim.2010.12.005

available curative treatment of complete IFN- γR deficiency is hematopoietic stem cell transplantation; however, the overall success rate of stem cell transplantation in this setting is low.

Treatment with IFN- α as additional therapy has been described in two patients, with complete IFN-vR1 and complete IFN-yR2 deficiency, respectively, suffering from disseminated infection with Mycobacterium avium complex [4,5]. The rationale behind this therapy being that IFN- α and IFN- γ activate common signalling pathways and the induced genes and biological effects partly overlap. Through the activation of overlapping effects of IFN- α and IFN- γ , treatment with exogenous IFN- α is thought to (partly) compensate for the absence of IFN- γ signalling in patients deficient in IFN- γ R1 or IFN- γ R2. The IFN- α receptor is composed of IFN-aR1 and IFN-aR2 subunits, associated with Janus kinases (JAKs) TYK2 and JAK1. In response to IFN- α , these JAKs are activated and subsequently phosphorylate signal transducer and activator of transcription (STAT) 1 and STAT2 [6]. STAT1 and STAT2 form heterodimers, which associate with interferon regulatory factor-9 (IRF-9) to form a STAT1/STAT2/IRF-9 complex (also known as IFN-stimulated gene factor 3 (ISGF3)) [7]. This complex migrates to the nucleus and regulates primary response genes by binding specific DNA response elements. IFN- γ signals via the IFN- γ R1 and IFN- γ R2. Upon binding of IFN- γ , receptor-associated JAK1 and JAK2 are phosphorylated, which in mature monocytes and macrophages leads to phosphorylation of STAT1 [8]. STAT1 dimerizes and translocates to the nucleus to regulate primary response gene transcription [8]. STAT1 can, in theory, also form homodimers in response to IFN- α [9]. IFN- α signalling is not affected by deficiencies of the IFN- γ R1 or the IFN- γ R2.

The potential effect of IFN- α treatment in patients with complete IFN- γ R deficiency has not been investigated at the cellular level. We therefore determined whether IFN- α can (partly) compensate for absence of IFN- γ signalling in cells obtained from an IFN- γ R1 deficient patient.

2. Materials and methods

2.1. Cell culture conditions and infections

Human CD14⁺ cells and PBMCs were isolated from healthy donor buffy coats (Sanquin) or from blood from healthy consenting volunteers, or an IFN- γ R1 deficient patient (P2 in [10]), by Ficoll-Amidotrizoate density gradient centrifugation and subsequent selection with anti-CD14 MACS beads (Miltenyi Biotech). The purity of monocytes selected with anti-CD14 MACS beads is typically 95–98% in our hands. CD14⁺ cells were cultured in RPMI-1630 medium, supplemented with 20 mM GlutaMAX (Gibco/ Invitrogen), 10% FCS, 100 U/ml penicillin, and 100 µg/ml streptomycin (Gibco/ Invitrogen).

For assessment of in vitro mycobactericidal activity as described [12], CD14⁺ cells were cultured for 6 days in the presence of 5 ng/ml GM-CSF (Biosource) to generate proinflammatory macrophages (M φ 1) as previously described [11]. These cells were seeded at 3 × 10⁵ in 24-well plates, left to adhere then treated with IFN- α (IFN- α 2b (Intron®A)/IFN- α 2a (Roferon®A)) and/or IFN- γ (Immukine®, Boehringer) or H-89 (Sigma Aldrich) overnight prior to infecting with log phase growth *M. smegmatis*::GFP at an MOI of 1. Extracellular mycobacteria were eliminated by low dose gentamycin treatment (5 μ g/ml) for the duration of the experiment. All cells were subsequently collected, lysed, plated out on 7H9 agar plates and levels of fluorescence were assayed in a Mithras LB940 plate reader after 24 h.

All research involving patient material was approved by the Leiden University Medical Center-Medical Ethical Committee. This research was conducted in accordance with the Declaration of Helsinki.

Figure 1 IFN- α induces STAT1 phosphorylation in monocytes from an IFN γ R1 deficient patient. Healthy control (A) or patient (B) derived PBMC were stimulated with 1000 U/ml IFN- α , 2.5 ng/ml IFN- γ , 1000 U/ml IFN- α plus 2.5 ng/ml IFN- γ , or left unstimulated for 15 min. Cells were labeled with anti-human pSTAT1-Alexa 647 and CD64-FITC antibodies and analyzed by FACS. Histograms shown are gated on CD64 positive monocytes. In monocytes from a healthy control, IFN- α , IFN- γ and IFN- α plus IFN- γ induced STAT1 phosphorylation. In monocytes from the patient IFN- α and IFN- α plus IFN- γ induced STAT1 phosphorylation, whereas stimulation with IFN- γ alone did not.

Download English Version:

https://daneshyari.com/en/article/6087808

Download Persian Version:

https://daneshyari.com/article/6087808

Daneshyari.com