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a b s t r a c t

An elastic beam suspended horizontally over a substrate in liquid electrolyte was subjected to electric,
osmotic, and van der Waals forces. The problem, which is governed by four non-dimensional parameters,
was solved using the finite element method. The sum of the electric and osmotic forces, the electrochem-
ical force, is usually attractive. However, the electrochemical force can be repulsive for a narrow range of
the ion concentration, the initial separation and surface potentials. Furthermore, the beam deflection is
not a monotonic function of the applied surface potentials, the bulk ion concentration, or the initial sep-
aration between the beam and the substrate. As these parameters are increased monotonically, the beam
bends up and then down. The pull-in voltage increases as the bulk ion concentration increases. The pull-
in voltage of a double-wall carbon nanotube suspended over a graphite substrate in liquid can be less
than or greater than the pull-in voltage in air, depending on the bulk ion concentration. The critical sep-
aration between the DWCNT and the substrate increases with the bulk ion concentration. However, for a
given bulk ion concentration, the critical separation is independent of the electric potentials. Further-
more, the critical separation is approximately equal in liquid and air.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Micro and nanofabrication processes are planar technologies.
Therefore, many micro and nanodevices consist of beams and
plates suspended horizontally over a substrate. On the microscale,
suspended beams serve as the active component of accelerometers,
rate gyroscopes, pressure sensors, chemical sensors, switches, elec-
trostatic actuators, valves, and pumps. It is reasonable to assume
that suspended beams will play a similarly important role on the
nanoscale.

van der Waals forces and electrostatic forces are important in
the mechanics of nanoscale objects. In gas or vacuum, parallel plate
electrostatic actuators undergo a ‘‘snap-down’’ or ‘‘pull-in’’ insta-
bility in which the two electrodes spontaneously come into contact
when the distance between the two actuators is less than 2/3 of the
initial distance. A study of these ‘‘pull-in’’ instabilities is provided
in a sequence of papers by Degani and Nemirovsky [1]. Actuators
similar to parallel plate actuators have been extended to the nano-
scale. Kim and Lieber [2] developed ‘‘nanotweezer’’ NEMS based on
carbon nanotubes for manipulation and interrogation of nano-
structures. The tweezers have two carbon nanotubes attached to
a glass rod. The potential difference between the two carbon nano-
tubes produces an attractive electrostatic force that can overcome
the elastic restoring force of the carbon nanotubes in closing the

tweezers. The nanotweezers were used to manipulate polystyrene
nanoclusters containing fluorescent dye molecules. Akita and
Nakayama [3] performed similar experiments and analysis for
nanotweezers consisting of carbon nanotubes in an AFM. Two
nanotube arms were fixed on the silicon cantilever tips used as
the substrate of the nanotweezers for the AFM. Dequesnes et al.
[4] analytically studied the pull-in instability of carbon nanotube
switches, which are essentially tweezers, using a continuum model
for three coupled energies: the elastic energy, the van der Waals
energy, and the electrostatic energy. Rotkin [5] considered the ef-
fect of the van der Waals force on the pull-in instability and ob-
tained analytical expressions for the pull-in gap and voltage of a
general model. Lin and Zhao [6] studied the dynamic behavior of
nanoscale electrostatic actuators by considering the effect of the
van der Waals force. A one degree of freedom lumped parameter
model was used in these investigations. Ramezani et al. [7] used
a distributed parameter model to investigate the pull-in parame-
ters of a cantilever type nanoscale electrostatic switch including
the van der Waals force.

In liquid electrolytes, the interaction of electric double layers al-
ters the electrostatic force and also introduces an osmotic force. A
number of researchers have modeled the mechanics of two elec-
trodes, separated by nanometers, using discrete springs subjected
to electric, osmotic, and van der Waals forces. The primary motiva-
tion for this work is the use of atomic force microscopy to measure
the forces between solid surfaces in liquid electrolytes, in which the
AFM cantilever beam is modeled as a discrete spring. These exper-
iments are usually performed to measure the zeta potential and/or
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determine force–distance or force–voltage relations [8–14]. How-
ever, voltage–distance relations are necessary to design electro-
static actuators that operate in liquid electrolytes. Boyd and Kim
[15] recently provided voltage–distance relations for nanoscale
electrostatic actuators in liquid electrolytes. However, the spring
was modeled as a discrete element, not a continuous elastic
structure.

The authors believe that the research presented herein is the
first study of nanoscale beams in liquid electrolytes in which the
beam is modeled as a continuous elastic structure acted upon by
electric, osmotic forces, and van der Waals forces. Our objectives
are to identify the non-dimensional parameters that govern the
beam deflection and pull-in instability, and then determine the
critical values of ion concentration and surface potential that will
cause the pull-in instability.

The governing equations are presented in Section 2. Results for
a gas or vacuum are compared to published solutions in Section 3.
For a liquid, novel results are presented in Section 4. Non-dimen-
sional solutions neglecting the van der Waals force are provided
in Section 4.1. Solutions including the van der Waals force for a sil-
icon switch and double-wall carbon nanotube switch are presented
in Sections 4.2 and 4.3.

2. Governing equations

Fig. 1 depicts a cantilever beam separated from a fixed substrate
by a liquid electrolyte. The beam is assumed to be prismatic,
homogeneous, and comprised of an isotropic linear elastic
material.

The beam is modeled using simple beam theory, also known as
Euler–Bernoulli beam theory

~EI
d4u
dx4 ¼ fvdW þ fEC ð1Þ

where u is the deflection of the beam, x is the position along the
beam measured from the clamped end, w is the width of the beam,
t is the thickness of the beam, I is the moment of inertia about the z
axis, and ~E is the effective modulus. The effective modulus ~E be-
comes the Young’s modulus E for narrow beams (w < 5t) and be-
comes the plate modulus E/(1 � m2), for wide beam (w P 5t),
where m is the Poisson ratio [16]. fvdW and fEC are the van der Waals
and electrochemical force per unit length of the beam, respectively.
In the present paper, the term ‘‘electrochemical force’’ is defined as
the sum of the electric and osmotic forces. The boundary conditions
are

uð0Þ ¼ duð0Þ
dx

¼ 0 ð2Þ

d2uðLÞ
dx2 ¼ d3uðLÞ

dx3 ¼ 0 ð3Þ

The van der Waals force per unit length between two parallel
plates is given by

fvdW ¼ �
Ahw

6pðh0 þ uÞ3
ð4Þ

where h0 is the initial gap between the beam and the substrate, and
Ah is the Hamaker constant. The electrochemical force per unit
beam length fEC is the sum of the electrical force per unit beam
length fE and chemical (or osmotic) force per unit beam length fC

fEC ¼ fE þ fC ð5Þ

The chemical force is due to the difference in the osmotic pres-
sure of the interstitial solution (Pi) and the bulk solution (P0) with
which it is in contact. For a dilute solution

fC ¼ ðPi � P0Þw ð6Þ

By combining the general expression for the osmotic pressure of
an electrolyte solution and the ionic concentrations c+ and c� at
equilibrium, one can derive

P ¼ kT
X

ck; cþ ¼ cb exp � zew
kT

� �
; c� ¼ cb exp

zew
kT

� �
ð7a-cÞ

where cb is the bulk concentration which is assumed to be equal for
both ions, e is the electronic charge, z is the absolute value of the
valence, w is the electric potential, k is the Boltzmann constant, T
is the absolute temperature, and we have assumed that the bulk po-
tential is zero. The chemical force can be written as

fC ¼ 2cbkTw½cosh
zew
kT

� �
� 1� ð8Þ

The electric force is

fE ¼ �
1
2
ee0jrwj2 ð9Þ

where e is the relative permittivity of the dielectric medium and e0

is the permittivity of free space. The electric potential can be ob-
tained from the Gauss law written in the form of the Poisson–Boltz-
mann equation given by

r2w ¼ � 1
ee0
ðzecþ � zec�Þ ¼ 2zecb

ee0
sinh

zew
kT

� �
ð10Þ

The Poisson–Boltzmann equation provides accurate results
when concentrations do not exceed 1 M and surface potentials
are less than 200 mV. For small potentials, the Poisson–Boltzmann
equation can be linearized (the Debye–Hückel approximation) to
yield

r2w ¼ 2z2e2cb

ee0kT
w ð11Þ

The solution to the linearized Poisson–Boltzmann equation for
two parallel plates separated by a distance h with the boundary
conditions w(X = 0) = w1 and w(X = h) = w2 is

w ¼ w1 coshðjXÞ þ w2 � w1 coshðjhÞ
sinhðjhÞ sinhðjXÞ ð12Þ

The electrochemical force is given by

fEC ¼ wee0j2 w2
1

sinh2ðjhÞ
w2

w1
coshðjhÞ � 1

2
1þ w2

w1

� �2
" #( )

ð13Þ

where 1=j2 ¼ ee0kT=2e2z2cb, and 1/j is the Debye length.
For convenience, the model is written in terms of the non-

dimensional variables h� ¼ h
h0
¼ h0þu

h0
, x� ¼ x

L and / ¼ zew
kT , yielding

the following non-dimensional Poisson–Boltzmann equation, equi-
librium equation, and forces:

r2/ ¼ j2/ ð14Þ

d4h�

dx�4
¼ FvdW þ FEC ð15Þ

Fig. 1. Nanocantilever beam.
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