ELSEVIER

Journal of Colloid and Interface Science

www.elsevier.com/locate/jcis

The pH-dependent surface charging and points of zero charge V. Update

Marek Kosmulski*

Department of Electrochemistry, Lublin University of Technology, Nadbystrzycka 38, PL-20618 Lublin, Poland Department of Physical Chemistry, Åbo Akademi University, Porthansgatan 3-5, FIN-20500 Åbo, Finland

ARTICLE INFO

Article history: Received 22 June 2010 Accepted 6 August 2010 Available online 22 August 2010

Keywords: Point of zero charge Isoelectric point Surface charge density Zeta potential Electrokinetic potential

ABSTRACT

The points of zero charge (PZC) and isoelectric points (IEP) from the recent literature are discussed. This study is an update of the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC, Boca Raton, FL, 2009] and of its previous update [J. Colloid Interface Sci. 337 (2009) 439]. In several recent publications, the terms PZC/IEP have been used outside their usual meaning. Only the PZC/IEP obtained according to the methods recommended by the present author are reported in this paper, and the other results are ignored. PZC/IEP of albite, sepiolite, and sericite, which have not been studied before, became available over the past 2 years.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The pH-dependent charging of various solid surfaces in aqueous solutions of 1-1 electrolytes governs the adsorption of ions, and thus it is of great theoretical and practical interest. The points of zero charge (PZC) and isoelectric points (IEP) observed in 0.0001-0.1 M aqueous solutions of alkali halides, nitrates(V), or chlorates(VII) are termed pristine PZC/IEP (to distinguish them from PZC/IEP observed in the presence of other solutes), and they are used to characterize the materials in materials engineering, catalysis, geochemistry, agriculture, wastewater management, etc. PZC/IEP from the literature have been summarized in numerous reviews. More dilute electrolyte solutions (<0.0001 M) are not suitable for studies of pH-dependent surface charging, because only a very limited pH range can be covered. More concentrated (>0.1 M) solutions of 1-1 electrolytes often show substantial ion specificity (the electrolytes are not inert), and they cause experimental difficulties (e.g., in pH measurements). The classical paper by Parks [1] is the most frequently used reference on pristine PZC. More recent, the most comprehensive compilation of pristine PZC was published by Kosmulski [2]. Due to a high activity in the field, that review was recently updated [3]. Several specialized reviews have been published, limited to certain types of materials, e.g., a recent review on IEP of viruses [4].

E-mail address: mkosmuls@hektor.umcs.lublin.pl

The production of new results is still extensive, and the very recent results (2009–2010) and a few older results (overlooked in [2,3]) are compiled in the present paper in Table 1. The reliable and up-to-date compilation of PZC/IEP is especially valuable for those who use the concept of PZC/IEP, but who do not measure their values themselves, and using a value from a random primary source or from an outdated or incomplete review may have adverse effects. For example in a very recent paper [5] IEP of AKP-50 alumina at pH 7.9 is reported, probably based on the literature. This happens to be the lowest IEP ever published for AKP-50, and it is lower by over 1 pH unit than the results reported in other sources. A correlation between IEP and electronegativity discussed in a very recent paper [6] was based on nonexistent results or substantially underestimated IEP, probably taken from a review paper.

1.1. Approach to results of insufficient quality

Most studies containing PZC/IEP of insufficient quality (according to the standards defined by the present author [2], and by the others [7]) are simply ignored in the present compilation. The present approach has it pros and cons, and some readers may prefer an exhaustive list of deliberately ignored references, with an explanation why those reference were not used, as it was done, e.g., in the famous book of Dzombak and Morel [8]. A few arguments in favor of the present approach are discussed in this section. First, there is no sharp borderline between "correct" and "incorrect" results. Only a few papers totally conform to the standards settled in this review, and many papers only partially conform to those

^{*} Address: Department of Electrochemistry, Lublin University of Technology, Nadbystrzycka 38, PL-20618 Lublin, Poland.

^{0021-9797/\$ -} see front matter \odot 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jcis.2010.08.023

Table 1PZC/IEP compilation: update of [2,3].

_	Section in [2]	Material	Electrolyte	<i>t</i> , °C	Method	Instrument	PZC/IEP	Ref.	No. of entries in [2,3]	PZC/IEP in [2,3]
	3.1. Oxides									
	3.1.1.1.1	Al ₂ O ₃ , AD101-F, from ACE ^a			рН		8.3	[14]		
	3.1.1.1.1	Al_2O_3 , AO-802 from Admatech, α , 99.8% pure			iep	Zeta Probe Colloidal Dynamics	8.5 ^b	[15,16]		
	3.1.1.1.3	Al ₂ O ₃ , α , CT300SG, Alcoa, original and NaOH-washed	KOH+HCl		iep	DT 1200	9.5	[17]		
	3.1.1.1.4.1	Al_2O_3 , α , Aldrich, >99.7%, washed	0.0005 M NaCl, NaBr, Nal,	25	iep	Malvern Zetasizer 3000 HS	6.7	[18]	1	6.7 iep
	211115		NaNO ₃	25	• • •	Malaa wa Maria 70	0.2	[10]	2	0.1
	3.1.1.1.5	Al ₂ O ₃ , α , 99.95% pure, from Alfa Aesar	0.01 M NACI	25	lep	Maivern Nano 25	8.2	[19]	3	9.1 lep
	3.1.1.1.1	Al ₂ O ₃ , KIU from Alum-Earth Plant ²	NaClO ₄	20	рн	Zata Dacha, Callaidal Dumamian	6.5 77.00	[20,21]		
	5.1.1.1.1 2 1 1 1 1 21	Al Ω Deguessa C used as obtained	0.01 M NaCl	25	iop	Acoustosizor 2	7.7-0.5	[22]	19	80
	2 1 1 1 1 21	Al ₂ O ₃ , Degussa C, useu as obtained		25	cip	Acoustosizer z	5	[23]	40	8.9
	3 1 1 1 1 21	Al ₂ O ₃ , Degussa C Al ₂ O ₂ , Degussa C	0.001-0.1 M KNO ₃	25	cip		8.5	[24]	48	8.9
	3 1 1 1 1 21	Al ₂ O ₂ Degussa C	0.01 M NaCl		ien	Zeta-Plus Brookhaven	92	[26]	40	89
	31111	Al_2O_2 , <i>y</i> from Engelhard	0.001 M NaCl	25	nH	Zeta Tius, Brooknaven	8.6	[20]	40	0.5
	3111129	Al_2O_3 , 7, 1000 Engenated Al_2O_3, 7126 from Girdler beated at 200 °C for 16 h	0.001 M KCl	25	ien	Zeta Meter 77	8.8	[28]	3	88
	31111	Al ₂ O ₂ α from Interchim 99 99% pure NaOH-washed			icp	Zeta Meter //	91	[29]	5	0.0
	31111	Al_2O_3 , sapphire from Kelpin or from MaTeck 001 plane	0.001 0.01 M KCL NaCL NaNO2		ien	Surpass Paar	4 ^d	[30]		
	31111501	Al_2O_2 v from Merck washed	0.01 M NaCl	25	nH	Malvern Zetasizer 3000	7.6 ^e	[31 32]	5	8 7
	51111110011			20	ien	marrern Detabiler 9000	8	[51,52]	5	0.7
	3.1.1.1.1	Al ₂ O ₃ , Shanghai Chem, Co, ^f	HCl + NaOH		iep	Zeta PALS. Brookhaven	8	[33]		
	3.1.1.1.68	Al_2O_3 , Sigma–Aldrich, high purity	0.01 M KCl		iep/cip	Zeta-Plus, Brookhaven	7.9/8.1	[12]	(1)	8.6
	3.1.1.1.72.2	α -Al ₂ O ₃ , AKP30, Sumitomo, original/washed			iep	Matec ESA 9800, ZetaProbe,	9.3 /9.8	16	21	9
		2.5			•	Colloidal Dynamics	,			
	3.1.1.1.72	α-Al ₂ O ₃ , AKP-HP40, Sumitomo			iep	Zetasizer III Malvern	9	[34]		
	3.1.1.1.84	Commercial γ-Al ₂ O ₃ from unknown source ^g	0.001 M KCl		iep	Zeta Meter 77	8*	[35]		
	3.1.1.4.1.1.1	Gibbsite, S11 from Alcoa	0.015 M NaCl		iep	Zeta Meter 3.0	9.1	[36]		
	3.1.1.4.1.2.1.4	Synthetic gibbsite ^h	0.01-0.5 M KNO3	25	cip		10.1	[37]	7	10
	3.1.1.4.1.2	Synthetic gibbsite ⁱ	0.01 M KCl	25	iep	Coulter Delsa 440	5.7	[38]		
	3.1.6.1.2	Synthetic CeO ₂			iep	electrophoresis	8.5	[39]		
	3.1.6.1.2	Synthetic cerianite, CeO ₂			iep	Brookhaven Zeta PALS	8.1	[40]		
	3.1.8.4.1	Cr(OH) ₃ ^j	0.0001-0.01 M KClO4		iep	Laser Zee Meter 501	8.4	[41]	2	7.8;8.4
										iep
	3.1.9.2.1.1	CuO from Aldrich			iep	Otsuka	8.5 ^k	[42,43]	2	8.5;9.2
		- ()							_	iep
	3.1.9.4.4	$Cu(OH)_2^1$	0.01 M KNO ₃		iep	Malvern Nano ZS	10	[44]	2	8.5;10.3
										ıep
	3.1.12.2.1	Magnetite from Prolabo	0.001–0.1 M NaCl	0.5	cıp		6.7	[45]		6 - ·
	3.1.12.2.2.1.3	Synthetic magnetite		25	iep	Malvern Zetasizer 3000 HS	5.6	[46]	4	6.7 iep
	-"-	-''- Countle the transmitter D	0.002 M NaNO ₃	25	iep	Malvern Zetasizer 2000	6.5 6.5	[47]	-"-	_"_
	3.1.12.2.2.1.3	Synthetic magnetite"		25	lep	Zeta PALS, Brooknaven	6.5 text	[48]	4	6.7 lep
	211777	Synthetic magnetite propaged under pitrogen			cin		D.D FIg. I	[40]		
	5.1.12.2.2 2 1 12 2 <i>A</i>	Magnetite natural from Ward's	0-0.5 WINANO ₃		iop	Coultor Dolso 440SY/ Zota	0.2	[49]		
	5.1.12.2.4	Magnetite, natural, noni ward's	0.005, 0.01 M NaCI		lep	Brobe Colloidal Dynamics	5.8/5.8	[50]		
	311775	Magnetite 105 m^2/a	0.001_0.1 M NaCl		cin	Flobe, conoidar Dynamics	8	[25]		
	3112.2.5	Maghemite from Alfa Aesar $40 \text{ m}^2/\sigma$	0.001 M NaCl		ien	Malvern Zetasizer 3000 HSA	69	[25]	1	77 ien
	31123125	Synthetic maghemite ⁰			ien	Malvern Zetasizer 2000	7.5	[52]	1	7.7 iCp
	3.1.12.3.1.2.5	Synthetic maghemite, from FeCl ₂ and FeCl ₂	0.1 M NaNO₂	25	ъР	marterii Ectusizer 2000	6.5	[53]	3	6.6
	3.1.12.3.1.2	Synthetic maghemite ^p			iep	Malvern Zetasizer Nano ZS	6.1	[54]	-	
	3.1.12.3.1.2	Synthetic maghemite ^q	0.001 M KCl		iep	Zeta PALS. Brookhaven	6.4	[55]		
	3.1.12.2.2	Hematite from Alfa Aesar	0.001 M NaCl		iep	Zeta Probe, Colloidal Dynamics	8.9	[56]	2	6.5, 9, iep
										· · ·

M. Kosmulski/Journal of Colloid and Interface Science 353 (2011) 1-15

Download English Version:

https://daneshyari.com/en/article/608964

Download Persian Version:

https://daneshyari.com/article/608964

Daneshyari.com