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a b s t r a c t

We present a novel mesoscale simulation approach to modeling the evolution of solid particles segre-
gated at fluid–fluid interfaces. The approach involves a diffuse-interface field description of each fluid
phase in addition to the set of solid particles. The unique strength of the model is its generality to include
particles of arbitrary shapes and orientations, as well as the ability to incorporate electrostatic particle
interactions and external forces via a previous work [P.C. Millett, Y.U. Wang, Acta Mater. 57 (2009)
3101]. In this work, we verify that the model produces the correct capillary forces and contact angles
by comparing with a well-defined analytical solution. In addition, simulation results of rotations of var-
ious-shaped particles at fluid–fluid interfaces, external force-induced capillary attraction/repulsion
between particles, and spinodal decomposition arrest due to colloidal particle jamming at the interfaces
are presented.

Published by Elsevier Inc.

1. Introduction

Interfacial phenomena govern a wide range of processes in so-
lid-state materials, multi-phase fluids, and systems combining
solid–fluid components. The interactions of solid-state particles,
ranging from millimeter down to nanometer sizes, segregated at
fluid–fluid interfaces represent an emerging field of study [1]. From
a technological standpoint, particles in multi-phase fluids can be
used for self-assembly processing [2] with implications for materi-
als synthesis [3] and biological drug delivery [4,5], among other
things. From a purely scientific standpoint, studying particle–
fluid–fluid interactions is motivated by an incomplete understand-
ing of (i) the capillary forces exerted on particles by fluid–fluid
interfaces, and (ii) how fluid–fluid interfaces modify particle–par-
ticle interactions, including electrostatic and van der Waals forces.
These issues become particularly complex for particles that are
non-spherically shaped and/or have complex charge characteris-
tics (e.g., permanent dipole moments). The fabrication of non-
spherically shaped micro- and nano-particles [6] is becoming
increasingly better understood and controlled. Hence, there is an
abundance of potential self-assembly processes that may occur
due to the capillary forces on irregularly-shaped particles at
fluid–fluid interfaces that deserves investigation. Experimental
studies have begun to investigate non-spherically-shapes particles
are interfaces [7]. The computational methods required to simulate
such phenomenon is unfortunately lacking.

In this paper, we present a novel mesoscale simulation method
that utilizes diffuse-interface fields to model the capillary forces
and torques applied to particles suspended at fluid–fluid interfaces.
The approach is general enough to encompass arbitrary particle
shapes, and builds on the authors’ previous model [8,9] that allows
the calculation of electrostatic interactions due to particle charge
densities and/or permanent particle dipole moments. The diffuse-
interface field approach (DIFA) presented here is similar to,
although more general than, the commonly-known phase-field
method [10], in the sense that both techniques evolve complex
microstructural geometries without explicit interface tracking.
This approach is considered a mesoscale simulation model, and
therefore is most applicable to colloidal particles of size 100 nm–
100 lm (i.e., we do not consider non-uniform electron clouds or
atomic/molecular structuring in the fluid phase, both of which be-
come non-trivial for particles that are tens of nanometers in size or
below). In this paper, we will present results that demonstrate the
method’s ability to capture the correct capillary forces and contact
angles for a variety of fluid–fluid and fluid–particle interfacial
energies. In addition, simulations of coarsening arrest in bi-phase
fluids due to particle jamming at the fluid–fluid interfaces will be
presented.

2. Formulation

Before we discuss the derivation of the capillary forces and tor-
ques, the fluid–fluid model must be established. Here, we assume a
highly-viscous two-phase mixture, in which inertial forces are
non-existent and transport is governed by diffusion alone. Such
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an assumption is appropriate for polymer melts [11], for example.
We therefore adopt a Cahn–Hilliard description [12] of diffusion-
governed multi-phase morphology. In such a description, diffuse-
interface fields are used to represent the relative concentrations
of each fluid phase {ca} and each particle {gb}. The term diffuse
interface refers to the fact that in such models, the interfacial width
is finite and larger than the computational grid spacing [10]. Across
the interfaces, the concentration fields {ca} and order parameters
{gb} transition continuously, yet rapidly, from one bulk value to
the other. The total free energy of the fluid–fluid–particle system
is described by
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where f({ca}, {gb}) is the energy density described by

f ðfcag; fgbgÞ ¼ fcðfcagÞ þ fgðfgbgÞ þ fc;gðfcag; fgbgÞ: ð2Þ

The terms fc({ca}), fg({gb}), and fc,g({ca}, {gb}}) are the energy
densities of the multiple liquid phases, the solid particles, and
the interactions among liquid phases and solid particles, respec-
tively. They are defined as
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These free energy functions are phenomenological in nature,
and are constructed in the spirit of Landau theory to produce the
energy landscape required for such a system, i.e., energy minima
at {ca=i = 1, ca–i = 0, gb = 0} or {ca = 0, gb=j = 1, gb–j = 0}, that is, a
spatial position is occupied by either fluid i or particle j. Here, A
is a scaling coefficient and Baa0, Bbb0, and Bab are coefficients that
effectively raise or lower the barrier height between fluid–fluid
and fluid–particle energy wells. This allows control over the inter-
facial energies of any interface in the system, allowing simulations
of, for example, fully and/or partially hydrophobic or hydrophilic
particles. The fluid concentration fields are updated in time accord-
ing to the Cahn–Hilliard equation
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where Ma is the mobility of fluid species a. We note that, as de-
scribed in our previous article [8,9], the diffuse-interface fields
describing particle shapes, {gb}, evolve by rigid-body translations
and rotations, and therefore Eq. (4) is not solved, although we in-
clude it for generality (for the same reason, we do not include the
gradient term for {gb} in Eq. (1)). We note that Eq. (6) is effective
for evolving interfaces; however, fluid mechanics are not included
in this paper. The Navier–Stokes equations have been integrated
into a diffuse-interface approach previously (see e.g. [13]), and
the current model can be expanded to include them.

The capillary forces acting on any given particle segregated at a
fluid–fluid interface are obtained using a force density that can be
integrated around the entire particle–fluid–fluid interface. We note
that due to the diffuse interface widths of the fluid fields {ca} and
particle fields {gb}, this triple junction region is actually a three-
dimensional volume rather than a one-dimensional line (or for
two-dimensional simulations, a two-dimensional area rather than
a zero-dimensional point). The force density at any point inside the

triple junction region, say, formed by fluid fields c1, c2 and particle
field g is taken as

dF ¼ j½rc � ðrc �rgÞ�; ð7Þ

or

dF ¼ j½ðrc � rgÞrc � jrcj2rg�: ð8Þ

Here, j is a scaling coefficient that can be calibrated for any gi-
ven, well-defined system. The rc vector in Eqs. (7) and (8) is de-
fined as

rc ¼ c1c2ðrc1 �rc2Þ: ð9Þ

This vector defines the local orientation of the interface be-
tween fluids 1 and 2, and its magnitude is zero everywhere outside
of this fluid–fluid interface (where either c1 = 0 or c2 = 0). Fig. 1 pro-
vides a schematic illustration of each of the gradient terms given in
Eq. (7). The cross product terms in Eq. (7) ensure that the capillary
force exerted on a particle is directed along the fluid–fluid interface
and away from the particle. Thus, this capillary force density is
applicable to any particle shape or particle orientation.

The total capillary force on the ath particle is obtained by
integrating around the particle diffuse interface

FcapðaÞ ¼
Z

V
dFðaÞdV : ð10Þ

In addition, the torque produced on a particle due to this
capillary force at the particle surface is

TcapðaÞ ¼
Z

V
½r� rcðaÞ� � dFðaÞdV ; ð11Þ

where [r � rc(a)] is the separation vector between the location of
the particle–fluid–fluid interface and the particle center-of-mass
rc(a).

The overall force and torque on the ath particle are calculated by
summing the long-range electrostatic components, Fel(a) and
Tel(a), the short-range repulsive components, Fsr(a) and Tsr(a),
and the capillary components

FðaÞ ¼ FelðaÞ þ FsrðaÞ þ FcapðaÞ þ nf ðaÞ; ð12Þ

TðaÞ ¼ TelðaÞ þ TsrðaÞ þ TcapðaÞ þ ntðaÞ: ð13Þ

The long-range electrostatic and short-range repulsive forces
and torques are defined in our previous paper [8,9], and are not
considered in this work. The short-range particle interaction is
treated in a manner of soft-particle potential and is formulated
through an effective local force density acting on the surface of
the ath particle by its neighbors [8,9]:

Fig. 1. Schematic depiction of the gradient terms (existing within the diffuse
interfaces) presented in Eqs. (7)–(9) for an arbitrarily-shaped particle at a fluid–
fluid interface. The term »c represents the normal direction at any location on the
fluid–fluid interface, and »g represents the inward normal direction of the particle
surface. Eq. (7) dictates that at any point on the fluid–fluid–particle triple junction,
the force density dF acts in the direction along the fluid–fluid interface and away
from the particle.
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